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In view of the current short-term traffic flow prediction methods that fail to fully consider
the spatial correlation of traffic flow, and fail to make full use of historical data features,
resulting in low prediction accuracy and poor robustness. Therefore, in paper, combining
Non-negative Matrix Factorization (NMF) and LSTM model Based on Attention Mechanism
(AttLSTM), the NMF-AttLSTM traffic flow prediction algorithm is proposed. The NMF algorithm
is used to extract the spatial characteristics of traffic flow and reduce the data dimension. The
attention mechanism can extract more valuable features from a long sequence of historical
data. First, select high-correlation upstream and downstream roads, use NMF algorithm to
perform dimensionality reduction and to extract historical data features of these roads, then
combine with the historical data of this road as input. Finally, use the AttLSTM model to predict.
Experiments with the PeMS public data set and Wuhan core roads data show that the method
has higher prediction accuracy than other prediction models and is an effective traffic flow
prediction method.

1 Introduction

Short-term traffic flow forecasting in Intelligent Transportation Sys-
tems (ITSs) has always been an important component.1 Based on
current and past traffic flow data, it can predict traffic flow ranging
from a few minutes to a few hours in the future, providing a basis for
decision-making for traffic dispatch and planning. Traditional traffic
flow prediction models can be divided into two types, parametric
and non-parametric. Parametric models include some time series
models, such as Exponential Smoothing (ES), Autoregressive Inte-
grated Moving Average (ARIMA)[2] model and Kalman Filtering
model, etc. Non-parametric models include K-Nearest Neighbor (K-
NN) method, Artificial Neural Network (ANN), and SupportVector
Machine (SVM) [3]–[5] etc. However, because traffic flow data is
affected by various environmental factors and has the characteristics
of non-linearity and suddenness, the above models are affected by
random factors and become fragile, which makes it difficult for these
models to obtain high prediction accuracy. In recent years, deep
learning has developed rapidly, and its applications have penetrated
into all walks of life. Since the deep neural network used in deep
learning can simulate deep complex nonlinear relationships through

hierarchical feature representation, it can extract hidden features in
the data. Therefore, in line with the characteristics of traffic flow
data, deep learning methods can be used to predict traffic flow.

Recurrent Neural Network (RNN) is a type of deep learning
model that can effectively predict time series data. In recent years,
many researchers have conducted in-depth research on its applica-
tion and achieved many results. However, with the increase of the
input time series length, the traditional RNN will have the problem
of gradient explosion and gradient disappearance. It can only use
the information on time steps close to itself. In [6], the author uses
Long Short Term Memory Network (LSTM), which can effectively
overcome the problems of gradient disappearance existing in RNN
and capture the characteristics of time series in a longer time span.
There are also many variants of LSTM networks. Gated Recurrent
Unit (GRU) can be seen as a simplification of the LSTM network.
It combines the forgetgate and input gate in the LSTM network into
one gate unit, which simplifies the structure of the model. In [7],
the author compared the performance of LSTM model and GRU
model on short-term traffic flow. Although the above deep learning
models have achieved good results on prediction tasks, they do not
consider the spatial correlation between traffic flows, and the spatial
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topology of traffic sections has an important impact on traffic flow.
Therefore, considering the temporal and spatial characteristics of
traffic flow, [8] combines the Autoencoder and the LSTM model,
and uses the Autoencoder to obtain the traffic flow characteristics of
adjacent locations. The adjacent locations represent the upstream
and downstream locations of the current location. The LSTM model
is used to predict the traffic flow at the current location. However,
using the autoencoder model to extract features requires pre-training
of the data, which is time-consuming, and the LSTM model does
not perform well when the historical input sequence is long.

In [9], the author uses the attention mechanism to perform trans-
lation and alignment at the same time on machine translation tasks.
At present, it is believed that the paper applies the attention mech-
anism to the NLP for the first time. In [10], the author points out
that attention mechanisms have been successfully combined with
existing models in machine translation. In other areas, attention
mechanisms have also been applied, for instance, [11] based on
LSTM neural network combined with attention mechanism for vi-
sual analysis of human behavior. The paper [12] applied neural
network based on attention mechanism to medical diagnosis. The
attention mechanism can be understood as, for a long time series
data, after calculating the correlation between each element and the
current element, assigning different weights to these elements, used
to measure their impact on the current element. We focus on those
elements that have a greater impact on the current element.

Traffic flow data with typical time series characteristics can be
predicted by the RNN model. In recent years, researchers have used
this model to predict traffic flow. In view of the above-mentioned
improvements of the RNN model in recent years, in order to further
improve its predictive ability, based on the above research, a hy-
brid model traffic flow prediction method based on NMF-AttLSTM
will be proposed. The method first uses the weekly average spatial
correlation coefficient based on the Pearson correlation coefficient
to filter the upstream and downstream roads, and uses the NMF
algorithm to reduce the dimensionality of the historical data matrix
composed of the filtered upstream and downstream data to obtain
the reduced feature matrix. Compared with the Autoencoder, the
NMF algorithm is fast, does not require a pre-training process, and
is suitable for processing high-dimensional data. The advantage of
using the LSTM model based on the attention mechanism is that
for long historical input sequence data, it can measure the similarity
between each historical data and the current observation, and deter-
mine the selection of features in the historical data according to the
similarity. Compared with the LSTM model, its feature extraction
method is more reasonable. The experimental results in this paper
are based on the PeMS public data set [13] and the real traffic data of
the core area of Wuhan. The effectiveness of the proposed method
is verified by experiments on these two data sets.

The main work of this paper is as follows:

• Propose a method to extract the temporal and spatial charac-
teristics of traffic flow, combine the upstream and downstream
features of the current road segment, and use a non-negative
matrix factorization algorithm to reduce the dimension of the
data and extract the feature matrix.

• The attention mechanism is added to the LSTM model to
enhance the predictive ability of the LSTM model.

• The NMF-AttLSTM model was verified using public data sets
and real traffic data in Wuhan, and the experimental results
proved the effectiveness of the method.

The rest of this paper is organized as follows. In the section II,
the NMF algorithm is introduced first, and then the process of adding
the attention mechanism to the LSTM model is given. Finally, the
traffic flow prediction framework based on the NMF-AttLSTM
model is proposed. In section III, Experiments were performed
on two data sets and the experimental results were evaluated. The
section IV summarizes the whole paper.

2 NMF-AttLSTM Traffic Flow Prediction
Framework

2.1 Non-negative Matrix Factorization Algorithm

The traffic flow data is time series data, and the change patterns of
the traffic flow of adjacent roads in the spatial position have high
similarity, which implies the common characteristics of the traffic
flow changes. In order to extract this specific feature, we can con-
struct the historical traffic data on all relevant roads into a matrix
form, As shown in the following formula, suppose there are related
roads in total, and the time series length is t, and fi j represents the
traffic value of the road number i at time j.

Fmt =


f11 f12 ... f1t

f21 f22 ... f2t

... ... fi j ...
fm1 fm2 ... fmt

 , i ∈ [1,m] j ∈ [1, t] (1)

The NMF algorithm is used to analyze and decompose ma-
trix data. Its definition is that for any given two-dimensional non-
negative matrix, it can be decomposed into two non-negative sub-
matrices to satisfy the multiplication of these two non-negative
matrices to get the original matrix. As shown in (2).

Fmt = Wmk × Hkt (2)

Among them, W is called the basis matrix, and H is called the
coefficient matrix or the characteristic matrix. In paper, the H matrix
is used as the feature matrix of the original data to achieve the goal
of dimensionality reduction and feature extraction. Since both W
and H matrices are unknown, they need to be solved by algorithms.
Although there are many ways to reduce the matrix dimension, we
need to ensure that the values in W and H are non-negative, because
all traffic flow values need to be non-negative.

Therefore, the NMF(F, k) algorithm is used to solve the char-
acteristic matrix. At this time, the problem becomes that, given
the original non-negative matrix and parameters, matrix factoriza-
tion can be formulated as a non-negative factorization minimization
problem[14]. As shown in the (3):

f (W,H) = arg min
{W,H}

‖F −W · H‖2 (3)

The NMF(F, k) algorithm first needs to define a cost function to
quantify the degree of approximation between F and WH. One way
is to use the square of the Euclidean distance between F and WH,
as follows:
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‖F −W · H‖2 =
∑

i j

(
Fi j − (W · H)i j

)2
(4)

Another way is to use Kullback-Leibler divergence (KL diver-
gence) as the cost function, as shown in the (5):

D (F|| (W · H)) =
∑

i j

(
Fi j log

Fi j

(W · H)i j
− Fi j + (W · H)i j

)
(5)

Since this paper needs to use the NMF algorithm to extract the
flow characteristics of the relevant roads, it pays more attention to
the distribution characteristics of the flow instead of the absolute
difference in the flow value. And the KL divergence is often used
to measure the similarity of the two distributions. Therefore, the
KL divergence is selected as the cost function, and the problem of
solving W and H is transformed into: Under the constraint condition
W,H ≥ 0, with W and H as parameters, minimize the cost function
D (F||WH).

Use the multiplication update rule to iteratively update the pa-
rameters W and H. The update equation is as shown in the (6):

Wia ← Wia

∑
µ HaµViµ

(WH)iµ∑
v Hav

Haµ ← Haµ

∑
i WiaViµ

(WH)iµ∑
k Wka

(6)

In the above update rule, when W and H are at the stagnation
point of the divergence formula, the divergence will no longer be
updated. The proof of the convergence of the above update equa-
tion is given in [14]. Based on the NMF(F, k) algorithm, the basic
matrix W and the corresponding feature matrix H are obtained. In
the NMF-AttLSTM model, we mainly input H as a feature into
the AttLSTM model to provide upstream and downstream spatial
features for traffic flow prediction.

2.2 Construction of Attention-LSTM Model

LSTM is a recurrent neural network, as shown in Figure 1. RNN is
usually used to deal with time series problems. RNN uses a series
of historical data as input, extracts features through non-linear func-
tions, and stores the features extracted from each layer to provide
feature information for subsequent calculations. Circulation makes
information continue to pass to the next layer.

Figure 1: Recurrent neural network (RNN)

However, compared with the conventional RNN, the structure
of this repeated module A of LSTM is more complicated, as shown
in Figure 2.

Figure 2: The structure of LSTM cell

This module consists of three parts, the forgotten gate, the input
gate and the output gate. σ is the Sigmoid function, output a value
between 0 and 1, describing how much of each part can pass.

ft = σ
(
W f · [ht−1, xt] + b f

)
(7)

it = σ (Wi · [ht−1, xt] + bi) (8)

C̃t = tan h (Wc · [ht−1, xt] + bc) (9)

Ct = ft ·Ct−1 + it · C̃t (10)

ot = σ (Wo [ht−1, xt] + bo) (11)

ht = ot · tan h (Ct) (12)

Among them, ft determines how much information we want to
discard. it determines how much new information we should add. ot

determines how much information we want to output. xt is the input
at time t. ht−1 is the output of the previous gate, W f , Wi, Wc and
Wo is the weight, bi, b f , bc and bo is the bias, Ct−1 is the cell state
at the previous moment, Ct is the cell state at the current moment.
Since the model is difficult to learn information at a time far from
the current time, and it may be important for the current value. To
overcome the weakness, we tried to add an attention layer to the
LSTM network. Referring to the attention implementation steps of
[10], we can apply it to the LSTM model. As shown in Figure 3,
the attention layer is added to the LSTM model.

Figure 3: The process of adding an attention layer to the LSTM model

Among them, Xi, i ∈ (1, n) is the input, hi is the intermediate
output result of each cell, all of hi are input into each attention
model as H, and the elements of the next layer h

′

i are used as H
′

i
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to calculate the similarity and weight coefficient, and finally get
the attention coefficient. The specific attention model is shown in
Figure 4.

Figure 4: The internal structure of attention model

where 〈·〉 represents the dot product operation, which is used to
calculate the similarity between the current element and the inter-
mediate output result in the previous layer, and then normalized by
the softmax function to obtain the corresponding weight coefficient
ai. Finally, a weighted summation operation is performed to obtain
the Attention value Ci. The equations used in the attention layer are
as follows:

H = [h1 h2 · · · hn] (13)

simi = h
′

i · H
T (14)

ai =
esimi∑Lh

j=1 esim j
(15)

Ci =

Lh∑
j=1

ai · h j (16)

In (14), it uses vector and to calculate similarity to obtain
weights, (15) uses the softmax function to normalize the weight,
(16) uses the normalized weight ai and hi weighted sum. The re-
sult of weighted summation is the attention weight value Ci. The
implementation of the Attention layer is to retain the intermediate
output results of the input sequence by the LSTM encoder, and then
calculate the similarity between the intermediate output results of
the previous layer and the current output to obtain the weight factor,
and finally obtain the attention coefficient. Through the Attention
mechanism, it is possible to find out the traffic flow in the past
period that is most relevant to the forecast period in the time-based
long traffic flow sequence, which improves the ability of the original
model to predict a longer sequence traffic flow.

2.3 NMF-AttLSTM

In general, the traffic flow of a road is not only related to its own
historical flow, but the flow of its upstream and downstream roads
in space also has an important impact on the changes in its own
flow. Full consideration of the flow changes in the upstream and

downstream roads is of great significance to the current road flow
prediction. The definition of the upstream and downstream roads in
the spatial position of a road is as follows: based on the direction of
vehicle movement, all roads connected to the entrance of the road
are called upstream roads, and all roads connected to the exit of the
road are called downstream roads, As shown in Figure 5.

Figure 5: Schematic diagram of the first and second level upstream and downstream
roads

As shown in Figure 5, we consider the first and second level
upstream and downstream flow data of the current road. However,
in the first and second level upstream and downstream roads, it
cannot be guaranteed that all the road traffic has a high correlation
with the current road flow. The similarity calculation method is used
to calculate the similarity of the flow of all relevant roads with the
current road, and the roads with weaker correlation are eliminated
accordingly. The addition of the flow characteristics of these roads
is not conducive to the improvement of the prediction accuracy.
This paper proposes to use the weekly average Pearson correlation
coefficient to measure the similarity of the flow changes between
the current road and the related road. The Pearson correlation coeffi-
cient is generally used to analyze the similarity between two ordered
vectors of equal length. The equation is as shown in (17):

R (X,Y) =
E (XY) − E (X) E (Y)√

E
(
X2) − E2 (X)

√
E

(
Y2) − E2 (Y)

(17)

Where E is the mathematical expectation. As the traffic flow
changes have a certain periodicity, for example, the weekly traffic
changes of a certain road section are similar, as shown in Figure 6:

It shows that a week’s traffic flow change can represent the over-
all traffic flow change of the road section, and the average of the
Pearson correlation coefficient of the flow data of a week can be
used as the similarity value between the road section and other road
sections.
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Figure 6: Traffic flows in link 10483 of Wuhan for three weeks

Rweek =
1
n

n∑
i=1

Ri (18)

Then the weekly average correlation coefficient can be expressed
as the equation (18), n is the number of days, the value is set to 7,
and Ri is the day correlation coefficient. Figure 7 is a flowchart of
the overall architecture of NMF-AttLSTM.

3 Experimental and Analysis

3.1 Data Sources

(1) PeMS public data set
The Caltrans Performance Measurement System (PeMS) is a

professional traffic flow data collection system. Approximately
15,000 detectors located in major cities in California collect traffic
data every day. This paper uses a total of 32 relevant road traffic
data from January to March 2017. The traffic data set is counted as
5 minutes, which means that there will be 12 traffic data points per
hour. For some missing and abnormal data, the method of moving
average is used to fill and correct the abnormal value. In order to
obtain the similarity between each road section, a week of data
was selected to calculate the weekly average Pearson correlation
coefficient, the remaining data was divided into training set and test
set, and the effectiveness of the model was evaluated on the test set.
(2) Wuhan City Traffic Data

To verify the prediction effect of the model on the actual road
section, the road section 14394 in the core area of Wuhan was se-
lected as the research section, and a total of 30 related road sections
in the upstream and downstream were extracted. The relationship
between the upstream and downstream is shown in Table 1.Includ-
ing road traffic data from November to December 2020. The data
collection granularity is 5 minutes, which means that 288 data will
be collected for each road section every day. Same as the PeMS data
set, the abnormal and missing data are also corrected accordingly.
And use one week of data to calculate the weekly spatial correlation
coefficient, to select high-correlation road sections to extract spatial

features. The actual spatial relationship between section 14394 and
its upstream and downstream sections is displayed in QGIS[15] by
using OpenStreetMap, as shown in Figure 8.

Table 1: Link number 14394 corresponds to the link number of the upstream and
downstream sections

Current Road Upstream link Downstream link

14394

14310,14318,14319,
14322,14388,14390,
14392,14393 ,14395,
14397,14398,14742,
14743,32433,32434,

14400,14405

14199,14197,14198,
14200,14313,14317,
14314,14315,14316,
14222,14223,14195,

32344

3.2 Experimental Setup

A sliding time window is used to construct a data set of histor-
ical data of this road section and its related road sections. The
specific process is shown in Figure 9, where S t represents the char-
acteristic matrix of historical time series data. Assuming that the
input sequence length is 10, the prediction lag time is 15 minutes.
Since the data is at a granularity of 5 minutes, it moves backward
two time units in turn to extract the current road flow as the la-
bel. Now the data set is row1 : (x1 : s1 s10, f1 : s13) , row2 :
(x2 : s2 s11, f2 : s14) , .... By analogy, other data set with different
input sequence lengths are constructed.

Due to the many parameters of the proposed prediction frame-
work model, the prediction results are also affected. The important
parameters are shown in Table 2. Through related experiments, the
most suitable parameters are selected as the benchmark parameters
for the experiment.

The model in Figure 9 is used for comparative analysis with the
NMF-AttLSTM model.

• SVR[16]: Support Vector Regression (SVR) is a method that
uses support vector machines (SVM) to solve regression prob-
lems, and is often used for time series forecasting. And use
RBF as the kernel function.

• LSTM[6]: Which has good predictive ability for time series
problems.

• AE-LSTM[8]: Use AutoEncoder to obtain the characteristics
of the upstream and downstream traffic flow data of the inter-
nal relationship of the traffic flow, and then use the acquired
feature data and historical data to predict through the LSTM
network.

• AttLSTM[1]: Use the attention mechanism to extract features,
add a layer of AttentionDecoder to the LSTM network, so
that the model can extract more valuable information.
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Figure 7: The flow chart of the traffic flow prediction architecture of the NMF-AttLSTM method. The entire prediction process is divided into selection of spatially relevant
sections, Non-negative Matrix Factorization (NMF) and AttLSTM model training and prediction. The upstream and downstream sections selected through correlation
analysis are used as the input of NMF(F, k), and the feature matrix after dimensionality reduction of the NMF algorithm is spliced with the current section flow as input to
predict future traffic flow

Figure 8: Link 14394 and its upstream and downstream sections in Wuhan urban
area

As shown in Table 2, we selected about 30 upstream and down-
stream road sections related to the current road section, and then
based on related experiments, determined that the road section with
a circumferential spatial correlation coefficient greater than 0.5
would be selected, and the data is reduced by the NMF algorithm.

The size of the parameter k in the NMF algorithm is equal to the
dimension of the feature matrix after dimensionality reduction. For
the proposed model and the contrasted neural network model, the
hyperparameters are set to the same value. The learning rate is
0.001, the optimization algorithm chooses the adam algorithm, and
the mean square error (MSE) is used as the loss function.

Figure 9: Constructing a data set through a sliding window

3.3 Model Evaluation

In the experiment, the performance of the traffic flow prediction
model is measured by three indicators: Mean Absolute Percent-
age Error (MAPE), Root Mean Square Error (RMSE) and Mean
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Absolute Error (MAE).

MAPE (x̄, x) =
1
N

N∑
n=1

|x̄n − xn|

xn
(19)

Table 2: Parameters set by default in the experiment

Parameter Description Value

n
Number of relevant sections
of upstream and downstream 30

Rweek
Weekly average Pearson

correlation coefficient >0.5

τ Input time series data length 12,24,36
λ Learning rate 0.001

Batch Size 16
Hidden layer neuron 64
Prediction interval 15min

MAE (x̄, x) =
1
N

N∑
n=1

|x̄n − xn| (20)

RMS E (x̄, x) =

√√√
1
N

N∑
n=1

(x̄n − xn)2 (21)

x̄n represents the predicted value, xn represents the observed
value, and N represents the number of data. MAPE considers the
closeness of the true value to the predicted value and the ratio of
the error to the true value, which is often used as a measure of the
accuracy of the prediction in the prediction problem. RMSE is used
to measure forecast stability. MAE is used to evaluate how close
the predicted results are to the real data. The smaller the value, the
better the fitting effect.

3.4 Experimental Results

First, use the PeMS public data set for analysis. For different NMF(F,
k) algorithm parameters k, under the condition that the input se-
quence length is 12 and the prediction interval is 15 minutes, the
distribution of MAPE is shown in Figure 10. When the parameter
k is 5, it has the lowest MAPE error. Here, the parameter k of
the NMF algorithm is also equivalent to the reduced dimensional-
ity of the historical data matrix. In subsequent experiments, both
the NMF-AttLSTM model and the AE-LSTM model use 5 as the
reduced dimension.

We use one day’s data to measure the performance of the NMF-
AttLSTM model and other comparison models. At the same time,
we set three different input sequence data lengths, 12, 24, and 36.
They represent the use of 1-hour, 2-hour, and 3-hour historical data
as the model input to predict the traffic flow after 15 minutes. Table
3 shows the performance of each model at different input sequence
lengths. The results show that as the input sequence length increases,
the MAPE, MAE, and RMSE of the AttLSTM model and NMF-
AttLSTM model decrease, which proves that the model with the
attention mechanism is more advantageous than other models when

the length of the input sequence increases, because the model with
the attention mechanism can extract more important features from
the long sequence input. Under the same input sequence length,
the NMF-AttLSTM model and the AE-LSTM model have better
performance than other models. Due to the addition of upstream
and downstream related road section features, the model provides
the characteristics of traffic flow changes. In all the experimental
results, the proposed NMF-AttLSTM model has the lowest MAPE,
which proves that the model can not only use the spatial characteris-
tics of traffic flow changes, but also obtain more important features
from historical flow data, enhancing the prediction ability of neural
network model for traffic flow.

Figure 10: MPAE error of NMF-AttLSTM model under different dimensionality
reduction parameter k (PeMS)

Table 3: Performance comparison of models under different input sequence lengths
(PeMS)

Input Length Model Error Value
MAPE(%) MAE RMSE

12

SVR 12.43 24.00 30.96
LSTM 12.52 27.68 35.65

AttLSTM 10.96 26.02 34.92
AE-LSTM 12.15 36.65 46.96

NMF-AttLSTM 9.10 22.72 31.49

24

SVR 12.23 24.31 32.85
LSTM 13.20 25.32 31.88

AttLSTM 10.50 26.30 34.57
AE-LSTM 8.60 22.23 30.41

NMF-AttLSTM 8.48 21.46 29.27

36

SVR 12.91 29.28 37.59
LSTM 11.53 25.84 33.45

AttLSTM 9.07 24.61 32.54
AE-LSTM 9.29 22.45 30.08

NMF-AttLSTM 7.89 15.21 19.92

In order to verify the effectiveness of the proposed model on
the actual road section, the road section 14394 in the core area of
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Wuhan is selected for analysis. The specific location is shown in
Figure 7. According to the method proposed in Section 2.3, firstly,
the correlation between each upstream-downstream road section
and the current road section is calculated by using the weekly spatial
correlation coefficient, Finally, the correlation coefficients of the
upstream and downstream sections with a correlation greater than
0.5 with 14394 are obtained, as shown in Table 4. Among the 30 up-
stream and downstream road sections, 14 relevant road sections are
selected. The historical flow data of these 14 relevant road sections
are used to construct the historical data matrix F, and then the NMF
algorithm is used to obtain the traffic flow spatial characteristics H.
For the NMF(F, k) algorithm, the effect of different k on the results
was also tested. As shown in Figure 11, the results show that k is 7
with the lowest MAPE.

Table 4: Weekly spatial correlation coefficients of relevant sections in the upstream
and downstream of road section 14394 of Wuhan

Upstream Downstream

Link ID
Correlation
coefficient Link ID

Correlation
coefficient

14310 0.805 14198 0.639
14322 0.805 14200 0.942
14392 0.811 14317 0.941
14742 0.496 14315 0.941
14400 0.660 14316 0.936
14405 0.593 14222 0.638

14223 0.926
14195 0.634

Figure 11: MPAE error of NMF-AttLSTM model under different dimensionality
reduction parameter k (Wuhan)

For road section 14394, also use one day’s data to predict the
performance of the model. In the experiment, the input sequence
length is 12 and the prediction interval is 15 minutes. Table 5 shows
the prediction errors of different models. The results show that the
proposed NMF-AttLSTM model has the lowest MAPE. However,
because road section 14394 of Wuhan and its upstream and down-

stream sections are all branch sections, compared with PeMS, the
flow value is generally low, so its MAPE error is higher, MAE and
RMSE error are lower.

Table 5: Performance comparison of each model (Wuhan)

Model Error Value
MAPE(%) MAE RMSE

SVR 22.92 3.27 4.39
LSTM 20.40 3.35 4.75

AttLSTM 18.35 3.29 4.75
AE-LSTM 18.75 3.16 4.22

NMF-AttLSTM 16.54 3.01 4.13

Table 6: Performance comparison of each model under two data sets

Data Set Model Error Value
MAPE(%) MAE RMSE

PeMS

SVR 12.52 25.86 33.80
LSTM 12.41 26.28 33.66

AttLSTM 10.17 25.64 34.01
AE-LSTM 10.01 27.11 35.81

NMF-AttLSTM 8.49 19.79 26.89

Wuhan

SVR 22.92 3.27 4.39
LSTM 20.40 3.35 4.75

AttLSTM 18.35 3.29 4.75
AE-LSTM 18.75 3.16 4.22

NMF-AttLSTM 16.54 3.01 4.13

Figure 12: The prediction result of each model under the condition that the input
sequence length is 12 (PeMS)
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Figure 13: The prediction result of each model under the condition that the input
sequence length is 12 (Wuhan)

Figure 14: Comparison of MAPE errors of different models in PeMS and wuhan
datasets

Table 6 shows the comparison results of the PeMS data set and
the wuhan data set. Under the condition that the prediction interval
is 15 minutes, the experimental results of the PeMS data set show
that the MAPE of the NMF-AttLSTM model is reduced by 1.68%
compared with the AttLSTM model and 1.52% compared with the
AE-LSTM model. The experimental results of the wuhan data set
show that the MAPE of the NMF-AttLSTM model is reduced by
1.81% compared with the AttLSTM model and 2.21% compared
with the AE-LSTM model. As shown in Figure 14, NMF-AttLSTM
has the lowest MAPE error on both data sets. The results on differ-
ent experimental data sets prove the effectiveness of the proposed
NMF-AttLSTM model.

Figure 12 and Figure 13 respectively describe the results of
using one day’s data prediction on the PeMS and Wuhan datasets. It
can be seen that the results of the proposed NMF-AttLSTM model
fit better with the true values. Figure 15 is the cumulative distribu-

tion function (CDF) diagram of the MAE error of the prediction
results of each model. CDF can describe the probability distribution
of the MAE error. The result shows that the MAE error of NMF-
AttLSTM on PeMS is less than 20, accounting for more than 60%.
The MAE error on the Wuhan dataset is less than 5, accounting for
more than 80%, which is better than other models.

(a) PeMS

(b) Wuhan

Figure 15: The CDF of MAE error for different models of PeMS and Wuhan data
sets

4 Conclusions

The paper studies the method of using the temporal and spatial char-
acteristics of traffic flow to predict traffic flow, and proposes a short-
term traffic flow prediction framework based on the NMF-AttLSTM
model. First, analyze the correlation between each upstream and
downstream road section and the current research road section by
using the weekly spatial correlation coefficient, and eliminate the
road sections with low correlation. Then use the NMF algorithm to
extract the features of the selected road sections, and finally com-
bine the extracted features with the historical traffic information of
the current road section, and use the AttLSTM model for training
and prediction. The algorithm considers the spatial relationship of
traffic flow, effectively utilizes the flow information of upstream and
downstream sections, and also reduces the dimension of data.
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In addition, an attention mechanism is added to the LSTM
model, so that the LSTM model can extract more valuable features
from historical data. This research only considers the relevant flow
information of the upstream and downstream sections. In the subse-
quent work, we can consider adding more complex road network
topology information to improve the performance of the model.
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