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 The wide acceptance of the semantic web language RDF for ontologies creation in various 

application fields has led to the emergence of numerous RDF data processing solutions, 

the so-called triplestores, for the storage of RDF data and its querying using the RDF query 

language SPARQL. Such solutions are however developed under various perspectives and 

on the basis of various architectures. It is therefore a necessity for users to be able to 

distinguish between these systems to decide about the appropriate triplestore for an efficient 

processing of their RDF data depending on their objectives, the characteristics of their data 

and the technologies at hand. To this end, we give an extended categorization of RDF data 

stores according to their main characteristics. Furthermore, we review relevant existing 

triplestores within their respective established categories. The categorization is established 

according to the motivations behind the adoption of one or the other triplestore for handling 

the main tasks of data storage and SPARQL querying. Furthermore, the categorization 

considers various aspects that specifically deal with RDF data modeling, organization of 

RDF data, the processing of SPARQL queries, scalability, as well as aspects related to the 

diverse related data processing technologies. 
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1. Introduction 

The “Resource Description Framework” (RDF) has been 

worldwide used during the last two decades for creating semantic 

ontologies in various application areas, and it is standardized by 

the “World Wide Web Consortium” (W3C) as the language of the 

semantic web (https:// www.w3.org/ TR /rdf11-primer/). RDF 

represents data in the form of (S, P, O) triples to express the 

semantic information that an entity or a resource S is in a 

relationship through the relation or predicate P with an object O 

that is either a resource or a literal value. This modeling art lets 

then represent data as RDF directed labeled graphs where in each 

graph, resources and literal values are representing nodes of the 

graph and a node n1 is connected to a node n2 with an arc labeled 

by a predicate P if (n1, P, n2) is an RDF triple. To query the RDF 

triples, W3C also launched the standard language SPARQL 

(“Simple Protocol and RDF Query Language” - https:// 

www.w3.org/ TR /sparql11-overview/). For interlinking purposes 

and for ontologies identification, entities are also endowed with 

URIs (Unique Resource Identifier). This mechanism has the 

advantage of assigning resources to groups, also called ontologies, 

and allowing interlinking resources of one group to resources of 

other groups yielding heterogeneous RDF data graphs. 

It is exactly this simple semantic format offered by RDF to 

model data within ontologies that led to the transformation of the 

classical web to change it from a web of static pages to an 

intelligent web of interlinked data. The RDF format makes it 

indeed possible for machines to intelligently navigate inside the 

interlinked data since it enables formulating semantics about such 

data. Furthermore, the schema languages RDFS (“RDF Schema” - 

https:// www.w3.org/ TR /rdf-schema/) and OWL (“Web 

Ontology Language” - https:// www.w3.org/ TR /owl2-syntax/), 

which are also W3C standards, do offer various semantic 

constructs to model the schemas of RDF data and allow intelligent 

navigation through such data using inference and reasoning 

techniques. RDF also offers various advantages for semantic 

modeling of enterprise data through its flexible schema definition 

and also offers a better alternative to the classical entity-

relationship modeling approach [1], [2]. All these factors have led 

to the appearance of an important number of management systems 

for handling the storage and the querying of RDF data. 

The abundance and variety of RDF data processing systems, 

also called triplestores, was also encouraged in a natural way by 

the emergence of various technologies such.as NoSQL (Not only 

SQL - (Structured Query Language)), P2P (Peer to peer) and Big 

Data ones and was also imposed by the multiple varieties of RDF 

applications. A multitude of RDF triplestores have indeed been 
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developed, each with its own features that distinguish it from other 

triplestores. So, for a specific use case or application involving the 

use of RDF for data modeling, an appropriate RDF storage and 

processing system must however be well chosen from the 

multitude of existing RDF triplestores dependently of multiple 

factors.  

In this sense, this work presents an extensive extension of the 

preliminary categorization of triplestores we gave in our 

conference paper [3]. The extension consists of a detailed 

categorization of RDF management systems with a review of 

relevant triplestores within their associated categories. Beyond the 

respect of RDF modeling constructs and implementation of 

elements of its query language SPARQL, RDF data management 

systems are filtered in accordance to the strategies used either for 

query processing or data storage. The strategies are enforced on 

one hand by the system architecture used if it is centralized or 

distributed, if it is a P2P, a cloud or a big data one. On the other 

hand, such strategies also depend on the adopted storage and 

querying methods, if they are relying on other existing data 

processing frameworks or if they are designed from scratch 

independently of any such frameworks. Furthermore, each 

category is presented according to the strategy used to handle RDF 

data storage and processing taking into consideration the structures 

used for its storage, indexing schemes and SPARQL 

implementation. For the organization of data storage, partitioning 

and indexing schemes are of particular interest since they affect the 

speed of query execution. This detailed categorization dependently 

of the data processing architectures and of the used systems 

characteristics and the targeted deployment machines represents 

therefore our main contribution in this work. The categorization 

with respect to such elements is of great importance for data 

management since they affect in a direct way the performance as 

well as the scalability of the triplestores at hand. To illustrate the 

given categorization we also review major relevant existing 

triplestores within their respective established categories. 

 The following sections of the paper are structured as follows. 

Section 2 presents the semantic web standards RDF, SPARQL, 

RDFS and OWL. Section 3 gives a summary of our categorization 

approach. Sections 4 to 9 present the main categories with their 

respective sub-categories. Section 10 summarizes the categories 

with a discussion on related works. Section 11 concludes this 

work. 

 

Figure 1: Web semantic Architecture 

2. Standards of the Semantic Web 

In the following subsections we give a brief presentation of the 

web semantic standards. The focus is mainly on the main issues 

related to these standards that are in a direct connection with the 

tasks of triplestores with respect to RDF data storage and query 

processing. Figure 1 shows the elements of the sematic web 

architecture. 

2.1. RDF Data Model 

The representation of data with RDF is based on modeling all 

information as a set of sentences of the form 'Subject Predicate 

Object' yielding triples (S:=Subject,P:=Predicate,O:=Object). 

Each triple (S,P,O) gives the meaning that the resource S is in a 

relationship through P with the object O. Objects can be either 

resources or literal values. In the example of figure 2, we have for 

example the triple (ex:Jabir,ex:teach,ex:java). 

 

Figure 2: RDF Example in N3-Notation 

2.2. RDFS and OWL 

RDFS offers constructs to describe elements of an RDF graph 

in a meta-model. The statements in the RDFS meta-model are also 

expressed as RDF triples. The meta-model declares the classes of 

resources and predicates used in the RDF graph. Ranges and 

domains of predicates can also be given in the meta-model. RDFS 

also offers the possibility of creating hierarchies between classes 

using constructs such as “subClassOf”. For example, in the 

example of Figure 3, the class “ex:course” is declared as a subclass 

of “ex:teachingactivity”. 

 OWL extends RDFS with many semantic constructs allowing 

the definition of more expressive RDF graphs and offering more 

reasoning possibilities on them. OWL meta-models are also 

expressed in RDF which makes the reasoning based on description 

logic easier. As examples of constructs in OWL we mention 

‘ObjectProperty’ and ‘DatatypeProperty’ for the definition of 

types of predicates, and ‘AllValuesFrom’, ‘SomeValuesFrom’, 

‘ComplementOf’ and ‘DisjointWith’ for constraints on domains 

and ranges of predicates. OWL also provides constructs for the 

creation of new types from other types as well as constructs for 

properties on predicates, for example, if they are invertible, 

symmetric or transitive. 
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Figure 3: RDF Graph Example 

2.3. SPARQL 

To query RDF data, the query language SPARQL has been 

proposed and standardized by the W3C. SPARQL is very similar 

to SQL and can perform complex joins of various RDF data graphs 

in the same query. Figure 4 gives a simple example for looking 

after who teaches “java”. 

Prefix ex: <https://www.mySite.ma/example#> 

SELECT ?x  

WHERE  

?x ex:teach ex:java . 

Figure 4: SPARQL example 

Beyond SELECT queries to extract information from RDF 

data, SPARQL also offers ASK queries that return either true if the 

query condition is satisfied and false if it is not satisfied, and 

CONSTRUCT to add new triplets to RDF graphs as results of such 

queries, as well as DESCRIBE queries that extract information 

about a resource. SPARQL queries can also handle aggregations 

and may contain optional clauses with optional conditions as well 

as a FILTER clause to further filter their results. 

3. Categorization approach 

The categorization approach we are using is mainly based on 

the context in which RDF data is used. Within this context the 

following elements are considered: 

• The storage technique used: We mainly focus on its adaptation 

to RDF model and for which environment it is used. With 

environment we consider the use of the solution on only one 

machine or on a cluster of machines and if the solution is for 

use in Cloud, P2P or desktop context.  

• Nature of destination devices: we handle the case of using 

RDF data either in constrained devices, desktops or clusters. 

• System scalability: we especially take into account the 

separation of solutions dependently on data volumes to be 

processed. 

• Data organization: This point is very important since 

SPARQL queries may pose many challenges related among 

others to join and sub-graph processing especially when RDF 

data are scattered among various graphs or stored in multiple 

files or in multiple nodes. 

4. Native versus Non-Native Triplestores 

Native RDF data systems are those systems that are built from 

scratch only for the purpose of handling RDF data without relying 

on any existent data management solution. This means that the 

solutions associated with such native stores are implemented 

independently of any existing specific database engine for the 

storage or querying of any kind of data. To achieve their tasks, 

native stores may however be built using functionalities of the file 

system under hand and of course existing programming languages 

such as C, C++ and Java. 

 
Figure 5: Catégorisation "Natifs / Non-Natifs" 

In contrary, non-native triplestores are those stores that rely on 

already existing data management solutions such as, for example, 

relational, XML, NoSQL database management systems or also 

Big Data technologies for data processing such as HBase or Pig. 

Figure 5 illustrates the considered “native/non-native” 

categorization. 

4.1. Non-Native triplestores 

As examples of non-native triplestores we have Jena SDB 

(https://jena.apache.org), triplestores that are based on existing 

classical relational database systems and triplestores that are based 

on NoSQL database systems. The category of relational 

triplestores is treated in section 6.1 and the category of non-

relational triplestore is considered in section 6.2. 

The Jena framework is implemented in Java. It has been 

continuously updated since its launching in the year 2000. Jena 

uses a data structure called model to represent an RDF graph with 

associated methods to manipulate its nodes which can be 

resources, blank nodes or literals. Also Jena creates triples as 

instances of the Statement class. 

Jena also comes with a reasoning module for inferencing based 

on some RDFS as well as OWL constructs and also based on rules 

that are defined by users. Furthermore, a Jena server called Fuseki 

is also provided for SPARQL querying over HTTP. 

Jena SDB uses Jena APIs and JDBC for handling RDF data in 

a relational database system. It will be further detailed in the 

category of single-table relational triplestores category. 

http://www.astesj.com/


K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021) 

www.astesj.com     224 

4.2. Native triplestores 

As already mentioned, in contrast to non-native stores which 

are setup to run on top of other existing database processing 

solutions, native stores are built specially for the RDF model to 

provide persistent storage with own database implementation 

solutions. Examples of such native store are RDF-3X [4], 

AllegroGraph (https://allegrograph.com), Stardog (http:// 

stardog.com), Jena TDB [5], Mulgara (http://www.mulgara.org), 

RDFox (http:// www.cs.ox.ac.uk/ isg/ tools/RDFox) and 

CliqueSquare [6], [7]. 

AllegroGraph store uses RDF-XML and N-Triples to load the 

triples. The implemented query language is SPARQL, however 

external programming APIs can be used to find datasets matching 

specific triples. 

CliqueSquare uses the distributed file system of Hadoop for 

storing data and its MapReduce implementation for the processing 

of RDF data. 

5. Memory-Based versus Disk-Based Triplestores 

Memory based triplestores, also called in-memory databases, 

rely on main memory for data storage. As the memory access is 

faster than disk access, these triplestores allow quick access to data 

and faster query execution.  Memory based triplestores show 

therefore best performance since entire datasets are in memory. 

Figure 6 shows the two considered categories which are presented 

next. 

 
Figure 6: "Memory / Disc" Categorization 

5.1. Memory-based triplestores 

As the name indicates, main-memory-based triplestores fully 

load RDF data in main memory to do processing on it. Jena TDB, 

TrinityRDF [8], AdHash [9], ClioPatria [10] and ScalaRDF [11] 

are examples of memory based triplestores. 

TrinityRDF allows the store of trillions of triples. It represents 

entities as graph nodes while the relations are represented as graph 

edges. Trinity supports parallel computing and handles massive 

number of in-memory objects as well as complex data with large 

schemas; however, it does not guarantee serialization for 

concurrent threads.  

AdHash uses the principle of applying lightweight hash 

partitioning to distribute the triples by using a hashing according 

to subjects in order to limit the data communication costs for join 

queries. AdHash elaborates this by monitoring the data access 

patterns and gradually redistributing and replicating the accessed 

data. By increasing the in parallel executed join operations, 

AdHash improves the queries execution time. 

5.2. Disk-based triplestores 

The triplestores in this category interact with RDF data through 

programs loading from disk the portions of data each time when 

they are needed. In this category we have of course those 

triplestores that use engines of relational database systems for 

processing RDF data such as Virtuoso [12] and 4store 

(https://github.com/4store/4store). 

We also have Big Data RDF processing solutions that rely on 

Hadoop or Spark frameworks for managing RDF data and which 

will be presented in section 8.  

6. Relational versus Non-Relational Categorization 

During the first years of the semantic web, the focus was 

mainly on the use of relational database (RDB) systems for the 

storage and processing of RDF data on one hand for their 

dominance and on the other hand for the aim to benefit from 

associated during years developed technologies with respect to 

efficient data processing as well as to users APIs.  

However, such use of these relational systems still face many 

challenges such as the need for efficient solutions to reduce the 

added time complexities due to the need of translating SPARQL 

queries into SQL ones.  Also, there are still some difficulties faced 

by the semantic web world for the use of object oriented based 

application frameworks and programming languages. 

Furthermore, the dynamicity of RDF data generally poses a 

challenging problem to relational database designers since 

relational schemas generally rely on static schemas to model the 

tables of their databases. 

6.1. Relational Triplestores 

Relational RDF stores use relational database (RDB) systems 

to store and query RDF data. Figure 7 presents the categories of 

such stores which will be detailed next. 

 
Figure 7: "Relational Triplestores" Category 

Relational triplestores provide various advantages due to the 

technologies developed over decades for relational database 

management systems (RDBMs). Worth mentioning with respect to 

RDF data storage and processing is the indexing strategies (e.g., 
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hashing, B/B+ trees) offered by RDBMs and query optimization 

techniques based on relational algebra operators as well as value 

typing. Also relational triplestores allow easy data integration of 

relational databases into RDF models or of other data sources with 

the use of existing data mapping and conversion techniques for 

transforming and storing such data sources into relational 

databases. A further positive point of relational triplestores is the 

possibility to use exiting data analytics tools (e.g., machine 

learning, business intelligence) developed for RDBMs. However 

extensions in this sense are still to be considered in the context of 

the nature of RDF data. 

Relational triplestores also suffer from the limitation related to 

the high processing costs due to RDF data loading in RDBMs and 

also to the need of translating SPARQL queries into SQL ones for 

data processing. Another drawback of RDF stores is that they are 

in majority centralized solutions which let them not to be adequate 

for massive RDF data management. A further negative point of 

relational triplestores is the lack of user involvement to use 

equivalent functionalities that are already offered to SQL users 

such as creation of indexes or programming interfaces. 

6.1.1. Non-Object Relational stores 

Since the beginning of the semantic web, various solutions to 

store RDF in classical non-object relational database (RDB) 

systems have been proposed. They mainly depend on how the RDF 

triples are distributed with the appropriate relational schemas. In 

the following we present the main sub-categories of RDB 

triplestores and their RDB used schemas to manage RDF data. 

6.1.1.1. Single vertical-table RDB triplestores 

This category contains those relational stores that store triples 

in a single table with a column for subjects, a column for 

predicates, a column for objects and possibly a column for graphs 

to which triples belong. In this category we have the triplestores 

Jena SDB, 3Store [13], 4Store [14], Sesame [15] and Hexastore 

[16]. 

Jena-SDB which is an RDB triplestore can be used with a large 

number of RDBs which let it benefit from the indexing capabilities 

provided by RDB. Applications may use JDBC connector to store 

RDF triples in Jena SDB.  The use of Jena-SDB is only 

recommended when it is necessary to layer on an existing SQL 

deployment. However, if explicit transactions support is required, 

Jena SDB reuses the transaction model from the underlying 

relational database. 

3Store has a query engine developed using the C language and 

it is implemented on top of MySQL. Hash tables are used 

respectively for resources, literals and graphs to encode such 

objects. Triples are stored in a single table that stores for each 

component of a triple its associated hash code that is used as a 

reference key to its entry in the associated table. RDF data can be 

accessed via RDQL based on an apache server interface and a 

query engine that translates RDQL query into SQL query. 

4Store runs on a cluster. Its design is based on 3Store. Data in 

4Store is stored as quads (G:graph, S,P,O) where G is the graph to 

which the triple '(S,P,O)' belongs. Triples in 4Store are partitioned 

using hashing on the identifiers of subjects. This partitioning 

strategy can however lead to nodes that are heavily loaded with 

data than the others and may therefore lead to high query 

processing time costs. 

6.1.1.2. Single-horizontal-table RDB stores 

The systems of this category use a single table, also called 

predicate table, with a column for subjects and a column for each 

possible predicate. Each resource is then stored with all values of 

its associated predicates in one line of the table and NULL values 

for the other predicates. Therefore, this approach could lead to 

lines in the table with many NULL values resulting in large 

processing times. 

6.1.1.3. Predicate-oriented RDB triplestores 

These systems associates a relation with two columns with 

each predicate for its (subject, object) pairs [17]. C-Store [18] and 

SW-Store [19] are examples of such stores. 

An advantage of this storing approach is that it is easy to 

implement and resolve the NULL values problem of single-

horizontal-table. However this approach has the disadvantage that 

it comes with a huge number of tables which involves large 

number of joins in query execution. 

6.1.1.4. Type-oriented RDB triplestores 

These systems associate a relation with each RDF resource 

type (i.e., for each class of objects) with one column for subjects 

of this common class and a column for each predicate associated 

with such subjects. Triples with subjects not belonging to any class 

are stored together separately in a table of three columns 

respectively associated with subjects, predicates and objects. 

FlexTable [20] and RDFBroker [21] are examples of such stores. 

RDFBroker is based on occurring predicates signatures in RDF 

data. The set of predicates that occur with a resource in the triples 

is called its signature. These signatures together build the signature 

of the graph. A signature graph is then constructed with nodes 

being the signatures, and an edge from one signature to a second 

one means that the first signature is a subset of the second one. 

RDFBroker then creates for each signature in the graph a table with 

a first column for the subjects appearing with the signature 

predicates in the RDF data triples and one column for each of these 

predicates. Triples are then put in the suited table according to the 

signature of their subjects. Such a strategy does remedy to the 

problem of NULLs posed by the single-horizontal-table approach. 

6.1.1.5. Hybrid triplestores 

Hybrid triplestores consist of stores that use combination of 

previous approaches. Within this category, we principally have 

stores that cluster the predicates that appear together with respect 

to a clustering criterion. For each cluster of predicates, a table is 

created with columns represented by the cluster predicates and a 

column for the subjects, and triples with these predicates are put 

together in this so-called property table. To store the triples with 

the remaining predicates, which are not clustered, a single-vertical-

table is used.  

AdaptRDF [22] is an example of hybrid triplestores. It uses a 

single vertical table as well as property tables. First all triples are 

put in the vertical table and with respect to the queries load 

property tables are created to partition the vertical table and further 

dynamically adjusted with respect to predicates based on a 
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mathematical process which considers the query workloads over 

time. 

6.1.2. Object Relational Stores 

Object relational databases (ORDBs) offer the possibility to 

encapsulate data within objects. They also give methods to 

serialize objects, generally as key value associations, or compound 

values. ORDBs are specially needed in fields with complex data 

objects and objects interactions with data represented as a 

collection of objects. 

Conversion and storage techniques from RDF into ORDBs 

have mainly been inspired from previous similar works on the 

processing of XML documents in ORDBs. One solution in this 

sense is the one proposed with its prototype in [23]. In this solution, 

for each document a model instance of a class Model is created to 

manage the elements of the document. A class Resource is defined 

to instantiate a resource or a predicate and a class Literal is used to 

instantiate literals. All these three classes are subclasses of a class 

Node which gathers common attributes. Also a class Statement is 

provided for instantiating triples with Node-components. Using 

these classes, the various elements of the RDF document are 

scanned and stored as objects using the methods of the class 

Model. 

Also worth mentioning are OO-Store [24] which is proposed 

as a prototype implementation for the processing of RDF data 

based on ORDBs, and ActiveRDF [25] which also comes with 

programming elements for the management of RDF data. 

 All object oriented relational RDF solutions with their OO 

programming constructs have the advantage of being open for 

possible further extensions to interact with the widely developed 

object oriented solutions either for data engineering or data 

accessing (e.g., UML, Spring, hibernate, ..) as well as with other 

programming languages. Also ORDB triplestores do profit from 

the advantages offered by RDBMs. Ways are however still needed 

to extend such triplestores with object oriented graph APIs for an 

object oriented programming perspective within the context of 

RDF data. 

6.2. Non-Relational triplestores 

Some of the key factors that have motivated the looking for 

other types of RDF processing systems other than relational ones 

are of course the limitations of RDB systems with respect to the 

variability that needs dynamic and flexible schemas other than 

static RDB schemas. 

 
Figure 8: Category of Non-Relational Triplestores 

Figure 8 illustrates the categorization of such systems whose 

sub-categories are presented in the following subsections. 

6.2.1. Binary Triplestores 

The class of binary stores consists of triplestores that use bits 

to encode RDF triples. BitMat [26] and TripleBit [27] are two 

examples of such stores. 

In BitMat each line of the matrix is associated with one subject 

and each column is associated with one predicate. Each entry in 

the i-th line and j-th column of the matrix is a sequence of bits from 

the set {0,1} with only one bit 1 whose position k representing the 

presence of the triple (i-th subject, j-th predicate, k-th object). 

BitMat benefits from the use of 0-1 sequences for representing 

RDF triples to use them to compress the RDF data. Querying of 

RDF data is done in two steps in BitMat. Candidate matches are 

derived from the bit matrix in first step and the exact matches are 

returned in a second step. Though the advantages offered by the bit 

representation and the possible compression on it, this technique 

still needs however to tackle the problems faced by insertion or 

deletion of RDF triples. 

6.2.2. NoSQL-Document triplestores 

Document stores, like MongoDB  and CouchDB, do use 

documents to persist data. A document is organized as a collection 

of fields where each field is associated with a set of values. Each 

one of the fields could be used as an index for data retrieval. 

The RDF triplestores D-SPARQ [28] and RDFMongo [29] are 

examples of document-oriented store that use MongoDB.  

Another NoSQL document solution for processing RDF data 

which we call CouchbaseRDF was presented in [30] to store RDF 

data in Couchbase (https://www.couchbase.com) which is a 

JSON-based document store. 

6.2.3. NoSQL-Key-Value triplestores 

The category of NoSQL-key-value triplestores consists of 

those RDF stores that use a NoSQL key-value database system for 

storing and querying RDF triples. NoSQL key-value database 

systems store data as collections of key/value pairs and offer 

get(key) and put(key, value) access methods to read and write data. 

Redis (REmote DIctionary Server - https:// github.com/redis/redis) 

and DynamoDB (https:// aws.amazon.com/fr/dynamodb) are 

examples of key-value NoSQL database management systems. 

Redis is an in-memory data management system. DynamoDB 

offers various characteristics such as replication and buck up of 

data and the possibility of its integration in web applications. 

An example of NoSQL-key-value RDF stores using Redis is 

ScalaRDF which is also a distributed and memory-based store. As 

an example of triplestores using DynamoDB we have AMADA 

[31]. 

6.2.4. NoSQL-Graph triplestores 

Graph oriented triplestores simply use the graph representation 

of RDF data and store these data as directed graphs where the 

nodes are either resources or literals and an edge starting from a 

node n1 to a node n2 is libeled with a predicate p to mean that 

(n1,p,n2) is a triple.  
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In the family of NoSQL-graph triplestores we have gStore [32], 

Dydra (http://dydra.com), AllegroGraph, BlazeGraph 

(http://blazegraph.com) and S2X (SPARQL on Spark with 

GraphX) [33]. 

The triplestore gStore is a centralized graph-oriented solution 

that uses bit-encoding to encode RDF triples as well as to encode 

SPARQL queries in the same way. Codes of SPARQL queries are 

then simply matched to the encoding list of RDF data. gstore has 

also been extended to a distributed solution called gStoreD. 

AllegroGraph is a high performance triplestore that is 

continuously updated and extended. For data retrieval, it organizes 

data in Repositories, associates an identifier with each triple, and 

stores each triple as a quad composed of the values for subject, 

predicate, object and the graph to which the triple belongs. 

Furthermore, it uses all combinations of these 4 components to 

which the identifier is added as default indexes. A query in 

Allegrograph is first analyzed to determine the indexes that may 

be involved by the query. The actual indexes used by the query are 

dynamically identified in a second processing step. Allegrograph 

also supports reasoning and transaction management. 

6.2.5. NoSQL-Column triplestores 

The list of column triplestores comprises among others “Jena-

HBase” [34], H2RDF+ [35], CumulusRDF [36] and Rya [37]. 

The triplestore “Jena-HBase” is built on top of HBase column 

store and is discussed in the Hadoop-nonnative Big Data 

triplestores category. H2RDF+ and CumulusRDF use the 

Cassandra column database. The triplestore Rya uses Accumulo. 

7. Centralized versus Distributed Categorization 

Various RDF stores have been designed to ensure efficient and 

scalable RDF query processing in a centralized way. Centralized 

systems manage the storage and querying on a single node. Hence, 

their main advantage is that they handle all operations locally. 

However they face the inconvenient of limited resources due to the 

using of a single machine. 

Distributed triplestores use multiple machines for the storage 

and querying of RDF data. They have therefore the capability of 

handling large amounts of data. 

Both categories with their characteristics are presented in the 

following subsections, respectively. 

7.1. Centralized triplestores 

Centralized triplestores use a single machine to handle RDF 

data. The centralization is of course with respect to data storage as 

well as SPARQL processing. Figure 9 presents the sub-categories 

of the centralized triplestores category. 

As their name suggest, the main drawback of centralized 

triplestores is the lack of scalability and fault tolerance.  

7.1.1. Desktop triplestores 

With desktop triplestores we mean those RDF management 

systems that run on single desktop machine such as RDF-3X and 

Hexastore. 

 
Figure 9: Category of Centralized triplestores 

Hexastore combines the relational vertical representation 

approach with indexing capability to ensure fast querying of RDF 

triples. Indeed it uses each possible combination of the 

components “subject”, “predicate” and “object” for indexing. 

7.1.2. Mobile triplestores 

This category of RDF stores consists of course of triplestores 

built especially for managing RDF data in mobile devices such as 

RDF-on-the-Go [38]. The flexibility and simplicity of the RDF 

data model make it as a good candidate for data interaction within 

and between such mobile devices. 

RDF-on-the-Go is a full-edged RDF storage system that allows 

RDF storage and SPARQL query processing for mobile devices. 

RDF-on-the-Go relies on Jena and the Semantic Web Toolkit 

ARQ. It stores triples using the Berkeley DB. Its indexing strategy 

is based on the use of R-Trees. 

7.2. Distributed RDF Triplestores 

 
Figure 10: Categorization of Distributed Triplestores 

Distributed triplestores are of course those systems that use 

more than one node to manage RDF data. The distribution 

concerns either the task of storage alone, the task of query 

processing alone or both tasks. Data distribution needs choosing 

efficient RDF data partition strategies that are also in accordance 

with the data retrieval modes chosen for querying the RDF data in 

order to achieve rapid RDF data manipulations. Issues involved are 

mainly related to data partition, data exchange between nodes, 

processing load partition and failure handling. The speed of RDF 

http://www.astesj.com/


K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021) 

www.astesj.com     228 

data processing is mainly influenced by such issues. The strategies 

to address such issues have to be well chosen to better control the 

communications between nodes which can lead to high costs and 

to minimize data processing times within single nodes. 

Figure 10 illustrates the distributed categories of triplestores. 

7.2.1. Native-distributed triplestores 

Native-distributed systems are considered here with respect to 

the distribution only and are those triplestores that come with their 

own distributing approaches for both storage distribution and 

query processing distribution. 

7.2.1.1. Master-Slave native-distributed RDF stores 

This category is composed of those triplestores that are built 

independently of any data management already existing solution 

and follow the master-slave distribution principle where RDF data 

management is in control of a master node that distribute 

management tasks to slave nodes. Examples of such triplestores 

are Virtuoso Cluster Edition, OWLIM [39], YARS2 [40], TriAD 

(Triple Asynchronous Distributed) [41]. 

OWLIM with its variants is developed with the java 

programming language and is a native RDF store.  Its variant 

SwiftOWLIM is rather a memory based centralized triplestore. Its 

cluster version BigOwlim is distributed and contrary to other 

distributed triplestores handles deletion and insertion of RDF data 

more efficiently with the help of its indexing and partitioning 

strategy. It is currently developed under the new name of GraphDB 

(http://graphdb.ontotext.com) which also belongs to the category 

of cloud triplestores. 

YARS2 is a native distributed RDF store. It proposes 

distributed indexing methods and three forms of indexes: Keyword 

index, six quad indexes and Join indexes.  

TriAD also uses a classical master-slave architecture with a 

direct communication through the asynchronous exchange of 

messages. TriAD uses METIS graph partitioning with respect to 

subject and objects and associated combinations of indexes. 

Queries in TriAD are optimized using a summary graph that takes 

in consideration the result of the partitioning in order to execute 

queries directly only on concerned parts of the RDF graph. 

7.2.1.2. P2P triplestores 

P2P (peer to peer) defines a distributed model for a network of 

computers in which computers, also called nodes, play an equal 

autonomous role with regards to responsibility in the network and 

share their resources with the other nodes. In a P2P system, there 

is no single master node for managing the distribution traffic 

between the nodes. Computing services, data management and 

networking are offered in a decentralized way and are therefore not 

controlled centrally like in master-slaves networks. Beyond this 

decentralization, both fault-tolerance and scalability are the main 

advantages of P2P systems. 

Examples of P2P based RDF data management systems are 

RDFPeers [42], Atlas [43], Edutella [44], RDFCube [45], 

GridVine [46] and UniStore [47]. 

The main problem faced by P2P triplestores is how to get a 

balanced distribution of RDF data between nodes for an efficient 

retrieval and querying of data and in order to avoid that some of 

nodes get heavily loaded with data more than other nodes. 

Hashing is a common indexing solution that is used for 

distributing and tracking RDF data. Triplestores do however differ 

in their adopted hashing strategies. The hashing does of course 

guide the distribution but dependently of the used hashing method 

it however may lead to imbalances of load between nodes. In this 

case, the strategy is generally completed with a local split 

procedure at each node to achieve a uniform distribution of RDF 

data and therefore to a balanced querying of the RDF data. Once 

exceeding a threshold of stored data a node launches its split 

procedure to achieve a uniform data distribution. 

 Another crucial task for a P2P store is the maintenance of the 

hashing information during the processes of data suppression, 

update and insertion. 

 Apart from this burden caused by hashing tasks, generally 

speaking P2P triplestores beyond scalability show robustness with 

respect to fault tolerance and the advantage of not being centralized 

controlled. 

7.2.2. Nonnative-distributed triplestores 

The nonnative-distributed triplestores, as the name suggests, 

rely on existing distribution frameworks for the processing of RDF 

data. On one hand, we have those triplestores that use cloud 

solutions that are presented next, and on the other hand, we have 

triplestores that are relying on Big Data frameworks which are 

presented in section 8. 

7.2.2.1. Cloud triplestores 

During the last years, cloud computing has acquired more 

interest by users due to its flexibility, costs and availability of 

computing resources. Indeed numerous cloud computing providers 

have evolved and are offering numerous computing software and 

making available powerful machines to users. Furthermore, cloud 

computing has many advantages such as hiding from users all the 

complexity of distribution and handling of problems related to 

fault tolerance or others. Within the framework of RDF data 

management, numerous triplestores relying on cloud solutions 

have also been developed. Among these we have GraphDB (http:// 

graphdb. ontotext.com), AMADA, H2RDF [48], Rya, Stratustore 

[49] and DiploCloud [50]. 

GraphDB is an RDF database system that runs on the AWS 

cloud. It provides easy on-demand access for semantic metadata. 

DiploCloud represents an RDF graph is generated on three 

main structures, namely RDF molecule clusters, template list and 

key index. 

7.2.2.2. Nonnative-Distributed graph triplestores 

This category is constituted of those RDF systems that use 

graph oriented solutions for RDF data management in a distributed 

scenario. 

Acacia-RDF [51] is an example of such triplestores. It also has 

implementation of various algorithms for handling graphs. 

Furthermore, it can also be run on a single node. Acacia-RDF relies 

on the graph database solution Acacia and is programmed in the 

language X10. It can also be used as a centralized triplestore. 

http://www.astesj.com/


K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021) 

www.astesj.com     229 

8. Big Data Triplestores 

In recent years, various solutions have emerged for the 

processing of huge amounts of data with the use of clusters made 

up simply by commodity computers. Such solutions are also 

offering programming tools for accessing and processing the large 

data scattered in their distributed file systems based on well-

defined frameworks. 

 
Figure 11: Category of Big Data Triplestores 

The categorization of Big Data triplestores we are giving here 

is made with respect to the Big Data processing solution used by 

each one of these triplestores. More precisely, we distinguish 

between those triplestores that are based on Hadoop, Spark or 

Flink. The adoption of each of these systems by a triplestore will 

be clarified in the associated category subsection taking of course 

the characteristics of the system considered. The sub-categories 

within the Big Data category are presented in the following 

subsections and are illustrated in Figure 11. 

8.1. Hadoop triplestores 

The Hadoop triplestores are triplestores that are built on 

Hadoop HDFS (Hadoop Distributed File System) and Hadoop 

MapReduce programming framework for the storage and 

processing of RDF data. 

In the following subsections we give the associated 

subcategories and highlight the main principles on which the 

storage structure and querying are based. Three subcategories are 

identified taken into account if they are relying on a direct use of 

HDFS and MapReduce completely or only partly with the use of 

other intermediary solutions. 

8.1.1. Hadoop-native triplestores 

Native HDFS-MapReduce triplestores are not relying on any 

already existing solution that uses Hadoop either for storing or 

querying data. They are built from scratch for the use of the HDFS 

file system to store RDF graphs and MapReduce for execution of 

SPARQL queries.  

In the category of Hadoop-native triplestores we have SHARD 

[52], HadoopRDF [53] and CliqueSquare. 

HadoopRDF stores RDF data triples into HDFS based on a 

predicate-oriented partitioning and performs decomposes queries 

respectively in MapReduce jobs. It keeps as many joins as possible 

in each job to reduce the number of jobs. This strategy can lead to 

high time costs especially when the value of predicates are 

unknown and multiple files have to be uploaded in this case to 

process queries. 

SHARD is also a Hadoop-triplestore that distinguish itself by 

the subject oriented RDF data storage and an iterative query 

processing which is also subject-oriented. For each subject it stores 

all its triples with their predicates and objects in one line. For 

processing a query, it creates a pattern matching job for each triple 

pattern in the query and executes a join with the result computed 

up to this job. This strategy leads of course to enormous running 

times. 

8.1.2. Hadoop-nonnative triplestores 

With the category of Hadoop-nonnative triplestores, we mean 

those triplestores that directly use other existing 

HDFS/MapReduce general data management solutions for the 

handling of RDF data. Examples of RDF stores in this category are 

PigSPARQL [54] and RAPID+ [55], [56], “Jena-HBase” and 

“Hive+HBase” [57]. 

The triplestore “Hive+HBase”, for example, uses 

functionalities of HBase that uses HDFS for managing data and 

Hive that also offers a data warehousing module. 

The reliance of Hadoop-nonnative triplestores on other 

existing Hadoop data storage and processing existing solutions is 

an advantage of such triplestores since such solutions are for use 

in a general context and offer therefore to the triplestores possible 

ways for further development with components related for 

example to integration of other data sources and for incorporating 

other functionalities related to data analytics and also to transaction 

management.  

However, the major drawback for both Hadoop-native and 

Hadoop non-native triplestores is the high communication costs 

because of unavoidable disk input and output operations during the 

execution of the task of MapReduce jobs phases when dealing with 

massive RDF data. In the case of Hadoop-nonnative triplestores, 

the translation of SPARQL queries to the query languages of the 

engines on these triplestores rely also adds extra costs. 

8.2. Spark based triplestores  

Spark's solution is based on storing processed data and 

intermediate results in main memories of computing nodes and 

keeping a history of the computations for recovering lost data in 

case of failures. This let Spark enhances speed since the switching 

to disk is not frequent as it is in the case for Hadoop MapReduce 

executions. At the base of computation, Spark uses the so called 

Resilient Distributed Datasets (RDDs) which are collections of 

data partitioned into chunks distributed on the computing nodes 

and kept as much as possible in main memory. Such RDDs are 

represented as Java objects. 

Spark also provides a module for SQL. SQL querying is done 

on RDDs which enables fast querying through the parallel 

computation offered by Spark across the nodes while benefiting 

from the use of memory to store RDDs. SQL querying on external 

data like Hive data is also done by loading such data into Spark 

RDDs. 
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Spark is used by the triplestores SPARQLGX [58], S2RDF 

[59], SPARQL-Spark [60], PRoST [61], TripleRush [62] and 

Presto-RDF [63]. 

The triplestore S2RDF (“SPARQL on Spark for RDF”) tries to 

minimize times of query processing by reducing the amounts of 

data to keep in memory. For this, it uses a schema for RDF data 

that extends the predicate-oriented partitioning schema already 

presented in subsection 6.1.1.3 with additional pre-computed 

tables. The main idea behind this schema is to reduce the size of 

data to be loaded into memory when dealing with joins within the 

queries to be processed. This has the advantage of avoiding input-

output hard disk operations since spark keeps data in memory for 

programs execution. For two distinct predicates tables T1 and T2, 

S2RDF pre-computes and stores into HDFDS three semi-join 

tables of those (s,o) pairs of T1 for which, respectively, s is a 

subject in the second, o is a subject in T2 and s is an object in T2.  

A limitation of S2RDF is the need for additional functionalities for 

the automatic launching of an efficient updating of the semi-join 

tables each time a deletion of some existing triples or an insertion 

of new ones happen.  

With regards to the aforementioned characteristics of Spark 

based triplestores, such triplestores have the advantage over 

Hadoop ones of largely reducing RDF data processing costs since 

the input-output operations are largely reduced due to the fact that 

RDF data and intermediary data is mainly kept partitioned in 

memories of processing nodes during the processing stages. 

8.3. Flink based triplestores 

Flink is natively developed for data streaming and offers 

massive real time streaming functionalities. It also offers APIs for 

data mining operations on streams. Flink can be considered as a 

Big Data engine for event streaming while Spark can be considered 

as a Big Data engine for micro-batch streaming. 

Libraries & APIs 

Python API Table API FlinkML … Gelly 

Kernel 
Distribution 

Deployment 

Centralized Cluster Cloud 

Storage 

Centralized Cluster Cloud 

Figure 12: Flink architecture 

 Flink is developed in Java and Scala and provides an API for 

the processing of graphs called Gelly. Components of Flink are 

presented in Figure 12. 

FLINKer [64] is an example of a triplestore that is based on 

Flink and provides therefore RDF data streaming. In FLINKer, 

Gelly graphs are built from RDF triples and then loaded in the 

Flink system to be handled. This graph representation is a strong 

positive point of FLINKer since it allows easy graph partitioning 

and distribution of data processing among nodes. For RDF data 

querying FLINKer uses Flink data processing operators on Gelly 

graphs to generate query optimization plans based on Flink 

parallelization contract programming approach (PACT) for a 

parallel execution. 

Though these advantages of FLINKer, it still needs adding 

some functionality for more user involvement with regards to 

possible extensions of FLINKer with APIs for data representation 

based on Gelly graphs and for data analytics purposes. Also, 

FLINKer lacks elements for transaction management. 

9. Stores for Constrained Devices 

Micro computing has made it possible to integrate 

programmable modules with memories for data storage in devices 

with reduced capacity. Various devices with such modules have 

been developed in recent years for various applications (edge 

devices, sensors, etc.). The integration of RDF processing systems 

has also become possible for such small peripherals despite their 

limited memory capacity. In the category of triplestores for 

constrained devices we have μRDF store [65], RDF4Led [66] and 

Wiselib [67]. 

The μRDF store was developed with the aim to make the 

exchange and treatment of RDF data possible in the world of 

“internet-of-things” (IoT). It was tested for micro-controllers with 

memories ranging from 8 to 64 kB and with an internet connection. 

The tests include the storage of RDF data as well as SPARQL 

querying using basic SPARQL constructs. 

RDF4Led, on the contrary, addresses RDF data exchange for 

lightweight edge devices. Such devices are largely common in IoT 

as well as in Cloud computing. The RDF4Led built-in system 

comprises a physical storage with an indexing strategy of triples, 

an intermediary buffering unit and a query engine. Efficiency of 

RDF4Led has been proven for devices with some hundreds of 

Mbytes in main memory and with a storage capacity of 16 GBytes. 

 
Figure 13: Main Categories of Triplestores 

10. Comparison with Related Works 

We notice that most existing works concentrate on a specific 

type of triplestores for reviewing or categorizing triplestores 

principally with limited characteristics or for comparing query 

processing times. We principally mention the works in [68] for the 

case of relational stores, in [69] for NoSQL stores, in [70] for P2P 

stores and in [71] for Big Data stores. 
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Contrary to these works, our approach comes with a consistent 

and detailed categorization with a focus on the storage and query 

processing characteristics. Figure 13 presents the main categories. 

As already mentioned, some of existing triplestores can be part of 

several categories. 

For other issues related to detailed comparison criteria for RDF 

stores we refer to our work in [72].  

11. Conclusion 

The enormous acceptance of RDF in many fields has led to the 

development of various triplestores for the management of RDF 

data with each triplestore exhibiting its own characteristics. The 

variety of triplestores is of course a result of the variety of 

application use cases and of the various characteristics of data to 

be handled. Such characteristics are mainly related to data variety, 

to the volumes of data and to the data management tools and 

technologies. In this work we gave an extensive categorization of 

existing triplestores while identifying, for each established 

category its associated key features that make it to be treated 

separately, and presenting its underlying RDF data processing 

capabilities. We mainly focused on the data processing techniques 

used by the systems of each category as well as the modes of their 

deployment for the processing of RDF data and queries. The list of 

the different categories of triplestores is indeed established according 

to destination machines if they are for constrained devices, for 

desktops or for clusters, as well as depending on the technologies 

on which they are based: relational, non-relational, Cloud, P2P or 

Big Data. The categorization is also illustrated by reviewing within 

each category its representative RDF triplestores while 

highlighting advantages and disadvantages of the technology on 

which they are based in the context of RDF data characteristics and 

giving some suggestions for possible extensions.  

With the given categorization, users will be able to identify the 

best suited triplestores for their use cases. Also, triplestores 

designers will be able to adequately focus on the relevant features 

to consider for the challenging task of design and development of 

RDF stores or to identify possible extensions of existing stores 

dependently on the targeted data management types and the tools 

at hand. 
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