

www.astesj.com 221

Categorization of RDF Data Management Systems

Khadija Alaoui*, Mohamed Bahaj

MIET Lab, Faculty of sciences and Techniques, Hassan I University, Settat, 26422, Morocco

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 28 December, 2020

Accepted: 23 February, 2021

Online: 10 March, 2021

 The wide acceptance of the semantic web language RDF for ontologies creation in various

application fields has led to the emergence of numerous RDF data processing solutions,

the so-called triplestores, for the storage of RDF data and its querying using the RDF query

language SPARQL. Such solutions are however developed under various perspectives and

on the basis of various architectures. It is therefore a necessity for users to be able to

distinguish between these systems to decide about the appropriate triplestore for an efficient

processing of their RDF data depending on their objectives, the characteristics of their data

and the technologies at hand. To this end, we give an extended categorization of RDF data

stores according to their main characteristics. Furthermore, we review relevant existing

triplestores within their respective established categories. The categorization is established

according to the motivations behind the adoption of one or the other triplestore for handling

the main tasks of data storage and SPARQL querying. Furthermore, the categorization

considers various aspects that specifically deal with RDF data modeling, organization of

RDF data, the processing of SPARQL queries, scalability, as well as aspects related to the

diverse related data processing technologies.

Keywords:

Triplestore

RDF

OWL

SPARQL

Semantic web

Big Data

Cloud

NoSQL

IoT

1. Introduction

The “Resource Description Framework” (RDF) has been

worldwide used during the last two decades for creating semantic

ontologies in various application areas, and it is standardized by

the “World Wide Web Consortium” (W3C) as the language of the

semantic web (https:// www.w3.org/ TR /rdf11-primer/). RDF

represents data in the form of (S, P, O) triples to express the

semantic information that an entity or a resource S is in a

relationship through the relation or predicate P with an object O

that is either a resource or a literal value. This modeling art lets

then represent data as RDF directed labeled graphs where in each

graph, resources and literal values are representing nodes of the

graph and a node n1 is connected to a node n2 with an arc labeled

by a predicate P if (n1, P, n2) is an RDF triple. To query the RDF

triples, W3C also launched the standard language SPARQL

(“Simple Protocol and RDF Query Language” - https://

www.w3.org/ TR /sparql11-overview/). For interlinking purposes

and for ontologies identification, entities are also endowed with

URIs (Unique Resource Identifier). This mechanism has the

advantage of assigning resources to groups, also called ontologies,

and allowing interlinking resources of one group to resources of

other groups yielding heterogeneous RDF data graphs.

It is exactly this simple semantic format offered by RDF to

model data within ontologies that led to the transformation of the

classical web to change it from a web of static pages to an

intelligent web of interlinked data. The RDF format makes it

indeed possible for machines to intelligently navigate inside the

interlinked data since it enables formulating semantics about such

data. Furthermore, the schema languages RDFS (“RDF Schema” -

https:// www.w3.org/ TR /rdf-schema/) and OWL (“Web

Ontology Language” - https:// www.w3.org/ TR /owl2-syntax/),

which are also W3C standards, do offer various semantic

constructs to model the schemas of RDF data and allow intelligent

navigation through such data using inference and reasoning

techniques. RDF also offers various advantages for semantic

modeling of enterprise data through its flexible schema definition

and also offers a better alternative to the classical entity-

relationship modeling approach [1], [2]. All these factors have led

to the appearance of an important number of management systems

for handling the storage and the querying of RDF data.

The abundance and variety of RDF data processing systems,

also called triplestores, was also encouraged in a natural way by

the emergence of various technologies such.as NoSQL (Not only

SQL - (Structured Query Language)), P2P (Peer to peer) and Big

Data ones and was also imposed by the multiple varieties of RDF

applications. A multitude of RDF triplestores have indeed been

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Khadija Alaoui, alaoui_khadija@outlook.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com

https://dx.doi.org/10.25046/aj060225

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060225

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 222

developed, each with its own features that distinguish it from other

triplestores. So, for a specific use case or application involving the

use of RDF for data modeling, an appropriate RDF storage and

processing system must however be well chosen from the

multitude of existing RDF triplestores dependently of multiple

factors.

In this sense, this work presents an extensive extension of the

preliminary categorization of triplestores we gave in our

conference paper [3]. The extension consists of a detailed

categorization of RDF management systems with a review of

relevant triplestores within their associated categories. Beyond the

respect of RDF modeling constructs and implementation of

elements of its query language SPARQL, RDF data management

systems are filtered in accordance to the strategies used either for

query processing or data storage. The strategies are enforced on

one hand by the system architecture used if it is centralized or

distributed, if it is a P2P, a cloud or a big data one. On the other

hand, such strategies also depend on the adopted storage and

querying methods, if they are relying on other existing data

processing frameworks or if they are designed from scratch

independently of any such frameworks. Furthermore, each

category is presented according to the strategy used to handle RDF

data storage and processing taking into consideration the structures

used for its storage, indexing schemes and SPARQL

implementation. For the organization of data storage, partitioning

and indexing schemes are of particular interest since they affect the

speed of query execution. This detailed categorization dependently

of the data processing architectures and of the used systems

characteristics and the targeted deployment machines represents

therefore our main contribution in this work. The categorization

with respect to such elements is of great importance for data

management since they affect in a direct way the performance as

well as the scalability of the triplestores at hand. To illustrate the

given categorization we also review major relevant existing

triplestores within their respective established categories.

 The following sections of the paper are structured as follows.

Section 2 presents the semantic web standards RDF, SPARQL,

RDFS and OWL. Section 3 gives a summary of our categorization

approach. Sections 4 to 9 present the main categories with their

respective sub-categories. Section 10 summarizes the categories

with a discussion on related works. Section 11 concludes this

work.

Figure 1: Web semantic Architecture

2. Standards of the Semantic Web

In the following subsections we give a brief presentation of the

web semantic standards. The focus is mainly on the main issues

related to these standards that are in a direct connection with the

tasks of triplestores with respect to RDF data storage and query

processing. Figure 1 shows the elements of the sematic web

architecture.

2.1. RDF Data Model

The representation of data with RDF is based on modeling all

information as a set of sentences of the form 'Subject Predicate

Object' yielding triples (S:=Subject,P:=Predicate,O:=Object).

Each triple (S,P,O) gives the meaning that the resource S is in a

relationship through P with the object O. Objects can be either

resources or literal values. In the example of figure 2, we have for

example the triple (ex:Jabir,ex:teach,ex:java).

Figure 2: RDF Example in N3-Notation

2.2. RDFS and OWL

RDFS offers constructs to describe elements of an RDF graph

in a meta-model. The statements in the RDFS meta-model are also

expressed as RDF triples. The meta-model declares the classes of

resources and predicates used in the RDF graph. Ranges and

domains of predicates can also be given in the meta-model. RDFS

also offers the possibility of creating hierarchies between classes

using constructs such as “subClassOf”. For example, in the

example of Figure 3, the class “ex:course” is declared as a subclass

of “ex:teachingactivity”.

 OWL extends RDFS with many semantic constructs allowing

the definition of more expressive RDF graphs and offering more

reasoning possibilities on them. OWL meta-models are also

expressed in RDF which makes the reasoning based on description

logic easier. As examples of constructs in OWL we mention

‘ObjectProperty’ and ‘DatatypeProperty’ for the definition of

types of predicates, and ‘AllValuesFrom’, ‘SomeValuesFrom’,

‘ComplementOf’ and ‘DisjointWith’ for constraints on domains

and ranges of predicates. OWL also provides constructs for the

creation of new types from other types as well as constructs for

properties on predicates, for example, if they are invertible,

symmetric or transitive.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 223

Figure 3: RDF Graph Example

2.3. SPARQL

To query RDF data, the query language SPARQL has been

proposed and standardized by the W3C. SPARQL is very similar

to SQL and can perform complex joins of various RDF data graphs

in the same query. Figure 4 gives a simple example for looking

after who teaches “java”.

Prefix ex: <https://www.mySite.ma/example#>

SELECT ?x

WHERE

?x ex:teach ex:java .

Figure 4: SPARQL example

Beyond SELECT queries to extract information from RDF

data, SPARQL also offers ASK queries that return either true if the

query condition is satisfied and false if it is not satisfied, and

CONSTRUCT to add new triplets to RDF graphs as results of such

queries, as well as DESCRIBE queries that extract information

about a resource. SPARQL queries can also handle aggregations

and may contain optional clauses with optional conditions as well

as a FILTER clause to further filter their results.

3. Categorization approach

The categorization approach we are using is mainly based on

the context in which RDF data is used. Within this context the

following elements are considered:

• The storage technique used: We mainly focus on its adaptation

to RDF model and for which environment it is used. With

environment we consider the use of the solution on only one

machine or on a cluster of machines and if the solution is for

use in Cloud, P2P or desktop context.

• Nature of destination devices: we handle the case of using

RDF data either in constrained devices, desktops or clusters.

• System scalability: we especially take into account the

separation of solutions dependently on data volumes to be

processed.

• Data organization: This point is very important since

SPARQL queries may pose many challenges related among

others to join and sub-graph processing especially when RDF

data are scattered among various graphs or stored in multiple

files or in multiple nodes.

4. Native versus Non-Native Triplestores

Native RDF data systems are those systems that are built from

scratch only for the purpose of handling RDF data without relying

on any existent data management solution. This means that the

solutions associated with such native stores are implemented

independently of any existing specific database engine for the

storage or querying of any kind of data. To achieve their tasks,

native stores may however be built using functionalities of the file

system under hand and of course existing programming languages

such as C, C++ and Java.

Figure 5: Catégorisation "Natifs / Non-Natifs"

In contrary, non-native triplestores are those stores that rely on

already existing data management solutions such as, for example,

relational, XML, NoSQL database management systems or also

Big Data technologies for data processing such as HBase or Pig.

Figure 5 illustrates the considered “native/non-native”

categorization.

4.1. Non-Native triplestores

As examples of non-native triplestores we have Jena SDB

(https://jena.apache.org), triplestores that are based on existing

classical relational database systems and triplestores that are based

on NoSQL database systems. The category of relational

triplestores is treated in section 6.1 and the category of non-

relational triplestore is considered in section 6.2.

The Jena framework is implemented in Java. It has been

continuously updated since its launching in the year 2000. Jena

uses a data structure called model to represent an RDF graph with

associated methods to manipulate its nodes which can be

resources, blank nodes or literals. Also Jena creates triples as

instances of the Statement class.

Jena also comes with a reasoning module for inferencing based

on some RDFS as well as OWL constructs and also based on rules

that are defined by users. Furthermore, a Jena server called Fuseki

is also provided for SPARQL querying over HTTP.

Jena SDB uses Jena APIs and JDBC for handling RDF data in

a relational database system. It will be further detailed in the

category of single-table relational triplestores category.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 224

4.2. Native triplestores

As already mentioned, in contrast to non-native stores which

are setup to run on top of other existing database processing

solutions, native stores are built specially for the RDF model to

provide persistent storage with own database implementation

solutions. Examples of such native store are RDF-3X [4],

AllegroGraph (https://allegrograph.com), Stardog (http://

stardog.com), Jena TDB [5], Mulgara (http://www.mulgara.org),

RDFox (http:// www.cs.ox.ac.uk/ isg/ tools/RDFox) and

CliqueSquare [6], [7].

AllegroGraph store uses RDF-XML and N-Triples to load the

triples. The implemented query language is SPARQL, however

external programming APIs can be used to find datasets matching

specific triples.

CliqueSquare uses the distributed file system of Hadoop for

storing data and its MapReduce implementation for the processing

of RDF data.

5. Memory-Based versus Disk-Based Triplestores

Memory based triplestores, also called in-memory databases,

rely on main memory for data storage. As the memory access is

faster than disk access, these triplestores allow quick access to data

and faster query execution. Memory based triplestores show

therefore best performance since entire datasets are in memory.

Figure 6 shows the two considered categories which are presented

next.

Figure 6: "Memory / Disc" Categorization

5.1. Memory-based triplestores

As the name indicates, main-memory-based triplestores fully

load RDF data in main memory to do processing on it. Jena TDB,

TrinityRDF [8], AdHash [9], ClioPatria [10] and ScalaRDF [11]

are examples of memory based triplestores.

TrinityRDF allows the store of trillions of triples. It represents

entities as graph nodes while the relations are represented as graph

edges. Trinity supports parallel computing and handles massive

number of in-memory objects as well as complex data with large

schemas; however, it does not guarantee serialization for

concurrent threads.

AdHash uses the principle of applying lightweight hash

partitioning to distribute the triples by using a hashing according

to subjects in order to limit the data communication costs for join

queries. AdHash elaborates this by monitoring the data access

patterns and gradually redistributing and replicating the accessed

data. By increasing the in parallel executed join operations,

AdHash improves the queries execution time.

5.2. Disk-based triplestores

The triplestores in this category interact with RDF data through

programs loading from disk the portions of data each time when

they are needed. In this category we have of course those

triplestores that use engines of relational database systems for

processing RDF data such as Virtuoso [12] and 4store

(https://github.com/4store/4store).

We also have Big Data RDF processing solutions that rely on

Hadoop or Spark frameworks for managing RDF data and which

will be presented in section 8.

6. Relational versus Non-Relational Categorization

During the first years of the semantic web, the focus was

mainly on the use of relational database (RDB) systems for the

storage and processing of RDF data on one hand for their

dominance and on the other hand for the aim to benefit from

associated during years developed technologies with respect to

efficient data processing as well as to users APIs.

However, such use of these relational systems still face many

challenges such as the need for efficient solutions to reduce the

added time complexities due to the need of translating SPARQL

queries into SQL ones. Also, there are still some difficulties faced

by the semantic web world for the use of object oriented based

application frameworks and programming languages.

Furthermore, the dynamicity of RDF data generally poses a

challenging problem to relational database designers since

relational schemas generally rely on static schemas to model the

tables of their databases.

6.1. Relational Triplestores

Relational RDF stores use relational database (RDB) systems

to store and query RDF data. Figure 7 presents the categories of

such stores which will be detailed next.

Figure 7: "Relational Triplestores" Category

Relational triplestores provide various advantages due to the

technologies developed over decades for relational database

management systems (RDBMs). Worth mentioning with respect to

RDF data storage and processing is the indexing strategies (e.g.,

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 225

hashing, B/B+ trees) offered by RDBMs and query optimization

techniques based on relational algebra operators as well as value

typing. Also relational triplestores allow easy data integration of

relational databases into RDF models or of other data sources with

the use of existing data mapping and conversion techniques for

transforming and storing such data sources into relational

databases. A further positive point of relational triplestores is the

possibility to use exiting data analytics tools (e.g., machine

learning, business intelligence) developed for RDBMs. However

extensions in this sense are still to be considered in the context of

the nature of RDF data.

Relational triplestores also suffer from the limitation related to

the high processing costs due to RDF data loading in RDBMs and

also to the need of translating SPARQL queries into SQL ones for

data processing. Another drawback of RDF stores is that they are

in majority centralized solutions which let them not to be adequate

for massive RDF data management. A further negative point of

relational triplestores is the lack of user involvement to use

equivalent functionalities that are already offered to SQL users

such as creation of indexes or programming interfaces.

6.1.1. Non-Object Relational stores

Since the beginning of the semantic web, various solutions to

store RDF in classical non-object relational database (RDB)

systems have been proposed. They mainly depend on how the RDF

triples are distributed with the appropriate relational schemas. In

the following we present the main sub-categories of RDB

triplestores and their RDB used schemas to manage RDF data.

6.1.1.1. Single vertical-table RDB triplestores

This category contains those relational stores that store triples

in a single table with a column for subjects, a column for

predicates, a column for objects and possibly a column for graphs

to which triples belong. In this category we have the triplestores

Jena SDB, 3Store [13], 4Store [14], Sesame [15] and Hexastore

[16].

Jena-SDB which is an RDB triplestore can be used with a large

number of RDBs which let it benefit from the indexing capabilities

provided by RDB. Applications may use JDBC connector to store

RDF triples in Jena SDB. The use of Jena-SDB is only

recommended when it is necessary to layer on an existing SQL

deployment. However, if explicit transactions support is required,

Jena SDB reuses the transaction model from the underlying

relational database.

3Store has a query engine developed using the C language and

it is implemented on top of MySQL. Hash tables are used

respectively for resources, literals and graphs to encode such

objects. Triples are stored in a single table that stores for each

component of a triple its associated hash code that is used as a

reference key to its entry in the associated table. RDF data can be

accessed via RDQL based on an apache server interface and a

query engine that translates RDQL query into SQL query.

4Store runs on a cluster. Its design is based on 3Store. Data in

4Store is stored as quads (G:graph, S,P,O) where G is the graph to

which the triple '(S,P,O)' belongs. Triples in 4Store are partitioned

using hashing on the identifiers of subjects. This partitioning

strategy can however lead to nodes that are heavily loaded with

data than the others and may therefore lead to high query

processing time costs.

6.1.1.2. Single-horizontal-table RDB stores

The systems of this category use a single table, also called

predicate table, with a column for subjects and a column for each

possible predicate. Each resource is then stored with all values of

its associated predicates in one line of the table and NULL values

for the other predicates. Therefore, this approach could lead to

lines in the table with many NULL values resulting in large

processing times.

6.1.1.3. Predicate-oriented RDB triplestores

These systems associates a relation with two columns with

each predicate for its (subject, object) pairs [17]. C-Store [18] and

SW-Store [19] are examples of such stores.

An advantage of this storing approach is that it is easy to

implement and resolve the NULL values problem of single-

horizontal-table. However this approach has the disadvantage that

it comes with a huge number of tables which involves large

number of joins in query execution.

6.1.1.4. Type-oriented RDB triplestores

These systems associate a relation with each RDF resource

type (i.e., for each class of objects) with one column for subjects

of this common class and a column for each predicate associated

with such subjects. Triples with subjects not belonging to any class

are stored together separately in a table of three columns

respectively associated with subjects, predicates and objects.

FlexTable [20] and RDFBroker [21] are examples of such stores.

RDFBroker is based on occurring predicates signatures in RDF

data. The set of predicates that occur with a resource in the triples

is called its signature. These signatures together build the signature

of the graph. A signature graph is then constructed with nodes

being the signatures, and an edge from one signature to a second

one means that the first signature is a subset of the second one.

RDFBroker then creates for each signature in the graph a table with

a first column for the subjects appearing with the signature

predicates in the RDF data triples and one column for each of these

predicates. Triples are then put in the suited table according to the

signature of their subjects. Such a strategy does remedy to the

problem of NULLs posed by the single-horizontal-table approach.

6.1.1.5. Hybrid triplestores

Hybrid triplestores consist of stores that use combination of

previous approaches. Within this category, we principally have

stores that cluster the predicates that appear together with respect

to a clustering criterion. For each cluster of predicates, a table is

created with columns represented by the cluster predicates and a

column for the subjects, and triples with these predicates are put

together in this so-called property table. To store the triples with

the remaining predicates, which are not clustered, a single-vertical-

table is used.

AdaptRDF [22] is an example of hybrid triplestores. It uses a

single vertical table as well as property tables. First all triples are

put in the vertical table and with respect to the queries load

property tables are created to partition the vertical table and further

dynamically adjusted with respect to predicates based on a

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 226

mathematical process which considers the query workloads over

time.

6.1.2. Object Relational Stores

Object relational databases (ORDBs) offer the possibility to

encapsulate data within objects. They also give methods to

serialize objects, generally as key value associations, or compound

values. ORDBs are specially needed in fields with complex data

objects and objects interactions with data represented as a

collection of objects.

Conversion and storage techniques from RDF into ORDBs

have mainly been inspired from previous similar works on the

processing of XML documents in ORDBs. One solution in this

sense is the one proposed with its prototype in [23]. In this solution,

for each document a model instance of a class Model is created to

manage the elements of the document. A class Resource is defined

to instantiate a resource or a predicate and a class Literal is used to

instantiate literals. All these three classes are subclasses of a class

Node which gathers common attributes. Also a class Statement is

provided for instantiating triples with Node-components. Using

these classes, the various elements of the RDF document are

scanned and stored as objects using the methods of the class

Model.

Also worth mentioning are OO-Store [24] which is proposed

as a prototype implementation for the processing of RDF data

based on ORDBs, and ActiveRDF [25] which also comes with

programming elements for the management of RDF data.

 All object oriented relational RDF solutions with their OO

programming constructs have the advantage of being open for

possible further extensions to interact with the widely developed

object oriented solutions either for data engineering or data

accessing (e.g., UML, Spring, hibernate, ..) as well as with other

programming languages. Also ORDB triplestores do profit from

the advantages offered by RDBMs. Ways are however still needed

to extend such triplestores with object oriented graph APIs for an

object oriented programming perspective within the context of

RDF data.

6.2. Non-Relational triplestores

Some of the key factors that have motivated the looking for

other types of RDF processing systems other than relational ones

are of course the limitations of RDB systems with respect to the

variability that needs dynamic and flexible schemas other than

static RDB schemas.

Figure 8: Category of Non-Relational Triplestores

Figure 8 illustrates the categorization of such systems whose

sub-categories are presented in the following subsections.

6.2.1. Binary Triplestores

The class of binary stores consists of triplestores that use bits

to encode RDF triples. BitMat [26] and TripleBit [27] are two

examples of such stores.

In BitMat each line of the matrix is associated with one subject

and each column is associated with one predicate. Each entry in

the i-th line and j-th column of the matrix is a sequence of bits from

the set {0,1} with only one bit 1 whose position k representing the

presence of the triple (i-th subject, j-th predicate, k-th object).

BitMat benefits from the use of 0-1 sequences for representing

RDF triples to use them to compress the RDF data. Querying of

RDF data is done in two steps in BitMat. Candidate matches are

derived from the bit matrix in first step and the exact matches are

returned in a second step. Though the advantages offered by the bit

representation and the possible compression on it, this technique

still needs however to tackle the problems faced by insertion or

deletion of RDF triples.

6.2.2. NoSQL-Document triplestores

Document stores, like MongoDB and CouchDB, do use

documents to persist data. A document is organized as a collection

of fields where each field is associated with a set of values. Each

one of the fields could be used as an index for data retrieval.

The RDF triplestores D-SPARQ [28] and RDFMongo [29] are

examples of document-oriented store that use MongoDB.

Another NoSQL document solution for processing RDF data

which we call CouchbaseRDF was presented in [30] to store RDF

data in Couchbase (https://www.couchbase.com) which is a

JSON-based document store.

6.2.3. NoSQL-Key-Value triplestores

The category of NoSQL-key-value triplestores consists of

those RDF stores that use a NoSQL key-value database system for

storing and querying RDF triples. NoSQL key-value database

systems store data as collections of key/value pairs and offer

get(key) and put(key, value) access methods to read and write data.

Redis (REmote DIctionary Server - https:// github.com/redis/redis)

and DynamoDB (https:// aws.amazon.com/fr/dynamodb) are

examples of key-value NoSQL database management systems.

Redis is an in-memory data management system. DynamoDB

offers various characteristics such as replication and buck up of

data and the possibility of its integration in web applications.

An example of NoSQL-key-value RDF stores using Redis is

ScalaRDF which is also a distributed and memory-based store. As

an example of triplestores using DynamoDB we have AMADA

[31].

6.2.4. NoSQL-Graph triplestores

Graph oriented triplestores simply use the graph representation

of RDF data and store these data as directed graphs where the

nodes are either resources or literals and an edge starting from a

node n1 to a node n2 is libeled with a predicate p to mean that

(n1,p,n2) is a triple.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 227

In the family of NoSQL-graph triplestores we have gStore [32],

Dydra (http://dydra.com), AllegroGraph, BlazeGraph

(http://blazegraph.com) and S2X (SPARQL on Spark with

GraphX) [33].

The triplestore gStore is a centralized graph-oriented solution

that uses bit-encoding to encode RDF triples as well as to encode

SPARQL queries in the same way. Codes of SPARQL queries are

then simply matched to the encoding list of RDF data. gstore has

also been extended to a distributed solution called gStoreD.

AllegroGraph is a high performance triplestore that is

continuously updated and extended. For data retrieval, it organizes

data in Repositories, associates an identifier with each triple, and

stores each triple as a quad composed of the values for subject,

predicate, object and the graph to which the triple belongs.

Furthermore, it uses all combinations of these 4 components to

which the identifier is added as default indexes. A query in

Allegrograph is first analyzed to determine the indexes that may

be involved by the query. The actual indexes used by the query are

dynamically identified in a second processing step. Allegrograph

also supports reasoning and transaction management.

6.2.5. NoSQL-Column triplestores

The list of column triplestores comprises among others “Jena-

HBase” [34], H2RDF+ [35], CumulusRDF [36] and Rya [37].

The triplestore “Jena-HBase” is built on top of HBase column

store and is discussed in the Hadoop-nonnative Big Data

triplestores category. H2RDF+ and CumulusRDF use the

Cassandra column database. The triplestore Rya uses Accumulo.

7. Centralized versus Distributed Categorization

Various RDF stores have been designed to ensure efficient and

scalable RDF query processing in a centralized way. Centralized

systems manage the storage and querying on a single node. Hence,

their main advantage is that they handle all operations locally.

However they face the inconvenient of limited resources due to the

using of a single machine.

Distributed triplestores use multiple machines for the storage

and querying of RDF data. They have therefore the capability of

handling large amounts of data.

Both categories with their characteristics are presented in the

following subsections, respectively.

7.1. Centralized triplestores

Centralized triplestores use a single machine to handle RDF

data. The centralization is of course with respect to data storage as

well as SPARQL processing. Figure 9 presents the sub-categories

of the centralized triplestores category.

As their name suggest, the main drawback of centralized

triplestores is the lack of scalability and fault tolerance.

7.1.1. Desktop triplestores

With desktop triplestores we mean those RDF management

systems that run on single desktop machine such as RDF-3X and

Hexastore.

Figure 9: Category of Centralized triplestores

Hexastore combines the relational vertical representation

approach with indexing capability to ensure fast querying of RDF

triples. Indeed it uses each possible combination of the

components “subject”, “predicate” and “object” for indexing.

7.1.2. Mobile triplestores

This category of RDF stores consists of course of triplestores

built especially for managing RDF data in mobile devices such as

RDF-on-the-Go [38]. The flexibility and simplicity of the RDF

data model make it as a good candidate for data interaction within

and between such mobile devices.

RDF-on-the-Go is a full-edged RDF storage system that allows

RDF storage and SPARQL query processing for mobile devices.

RDF-on-the-Go relies on Jena and the Semantic Web Toolkit

ARQ. It stores triples using the Berkeley DB. Its indexing strategy

is based on the use of R-Trees.

7.2. Distributed RDF Triplestores

Figure 10: Categorization of Distributed Triplestores

Distributed triplestores are of course those systems that use

more than one node to manage RDF data. The distribution

concerns either the task of storage alone, the task of query

processing alone or both tasks. Data distribution needs choosing

efficient RDF data partition strategies that are also in accordance

with the data retrieval modes chosen for querying the RDF data in

order to achieve rapid RDF data manipulations. Issues involved are

mainly related to data partition, data exchange between nodes,

processing load partition and failure handling. The speed of RDF

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 228

data processing is mainly influenced by such issues. The strategies

to address such issues have to be well chosen to better control the

communications between nodes which can lead to high costs and

to minimize data processing times within single nodes.

Figure 10 illustrates the distributed categories of triplestores.

7.2.1. Native-distributed triplestores

Native-distributed systems are considered here with respect to

the distribution only and are those triplestores that come with their

own distributing approaches for both storage distribution and

query processing distribution.

7.2.1.1. Master-Slave native-distributed RDF stores

This category is composed of those triplestores that are built

independently of any data management already existing solution

and follow the master-slave distribution principle where RDF data

management is in control of a master node that distribute

management tasks to slave nodes. Examples of such triplestores

are Virtuoso Cluster Edition, OWLIM [39], YARS2 [40], TriAD

(Triple Asynchronous Distributed) [41].

OWLIM with its variants is developed with the java

programming language and is a native RDF store. Its variant

SwiftOWLIM is rather a memory based centralized triplestore. Its

cluster version BigOwlim is distributed and contrary to other

distributed triplestores handles deletion and insertion of RDF data

more efficiently with the help of its indexing and partitioning

strategy. It is currently developed under the new name of GraphDB

(http://graphdb.ontotext.com) which also belongs to the category

of cloud triplestores.

YARS2 is a native distributed RDF store. It proposes

distributed indexing methods and three forms of indexes: Keyword

index, six quad indexes and Join indexes.

TriAD also uses a classical master-slave architecture with a

direct communication through the asynchronous exchange of

messages. TriAD uses METIS graph partitioning with respect to

subject and objects and associated combinations of indexes.

Queries in TriAD are optimized using a summary graph that takes

in consideration the result of the partitioning in order to execute

queries directly only on concerned parts of the RDF graph.

7.2.1.2. P2P triplestores

P2P (peer to peer) defines a distributed model for a network of

computers in which computers, also called nodes, play an equal

autonomous role with regards to responsibility in the network and

share their resources with the other nodes. In a P2P system, there

is no single master node for managing the distribution traffic

between the nodes. Computing services, data management and

networking are offered in a decentralized way and are therefore not

controlled centrally like in master-slaves networks. Beyond this

decentralization, both fault-tolerance and scalability are the main

advantages of P2P systems.

Examples of P2P based RDF data management systems are

RDFPeers [42], Atlas [43], Edutella [44], RDFCube [45],

GridVine [46] and UniStore [47].

The main problem faced by P2P triplestores is how to get a

balanced distribution of RDF data between nodes for an efficient

retrieval and querying of data and in order to avoid that some of

nodes get heavily loaded with data more than other nodes.

Hashing is a common indexing solution that is used for

distributing and tracking RDF data. Triplestores do however differ

in their adopted hashing strategies. The hashing does of course

guide the distribution but dependently of the used hashing method

it however may lead to imbalances of load between nodes. In this

case, the strategy is generally completed with a local split

procedure at each node to achieve a uniform distribution of RDF

data and therefore to a balanced querying of the RDF data. Once

exceeding a threshold of stored data a node launches its split

procedure to achieve a uniform data distribution.

 Another crucial task for a P2P store is the maintenance of the

hashing information during the processes of data suppression,

update and insertion.

 Apart from this burden caused by hashing tasks, generally

speaking P2P triplestores beyond scalability show robustness with

respect to fault tolerance and the advantage of not being centralized

controlled.

7.2.2. Nonnative-distributed triplestores

The nonnative-distributed triplestores, as the name suggests,

rely on existing distribution frameworks for the processing of RDF

data. On one hand, we have those triplestores that use cloud

solutions that are presented next, and on the other hand, we have

triplestores that are relying on Big Data frameworks which are

presented in section 8.

7.2.2.1. Cloud triplestores

During the last years, cloud computing has acquired more

interest by users due to its flexibility, costs and availability of

computing resources. Indeed numerous cloud computing providers

have evolved and are offering numerous computing software and

making available powerful machines to users. Furthermore, cloud

computing has many advantages such as hiding from users all the

complexity of distribution and handling of problems related to

fault tolerance or others. Within the framework of RDF data

management, numerous triplestores relying on cloud solutions

have also been developed. Among these we have GraphDB (http://

graphdb. ontotext.com), AMADA, H2RDF [48], Rya, Stratustore

[49] and DiploCloud [50].

GraphDB is an RDF database system that runs on the AWS

cloud. It provides easy on-demand access for semantic metadata.

DiploCloud represents an RDF graph is generated on three

main structures, namely RDF molecule clusters, template list and

key index.

7.2.2.2. Nonnative-Distributed graph triplestores

This category is constituted of those RDF systems that use

graph oriented solutions for RDF data management in a distributed

scenario.

Acacia-RDF [51] is an example of such triplestores. It also has

implementation of various algorithms for handling graphs.

Furthermore, it can also be run on a single node. Acacia-RDF relies

on the graph database solution Acacia and is programmed in the

language X10. It can also be used as a centralized triplestore.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 229

8. Big Data Triplestores

In recent years, various solutions have emerged for the

processing of huge amounts of data with the use of clusters made

up simply by commodity computers. Such solutions are also

offering programming tools for accessing and processing the large

data scattered in their distributed file systems based on well-

defined frameworks.

Figure 11: Category of Big Data Triplestores

The categorization of Big Data triplestores we are giving here

is made with respect to the Big Data processing solution used by

each one of these triplestores. More precisely, we distinguish

between those triplestores that are based on Hadoop, Spark or

Flink. The adoption of each of these systems by a triplestore will

be clarified in the associated category subsection taking of course

the characteristics of the system considered. The sub-categories

within the Big Data category are presented in the following

subsections and are illustrated in Figure 11.

8.1. Hadoop triplestores

The Hadoop triplestores are triplestores that are built on

Hadoop HDFS (Hadoop Distributed File System) and Hadoop

MapReduce programming framework for the storage and

processing of RDF data.

In the following subsections we give the associated

subcategories and highlight the main principles on which the

storage structure and querying are based. Three subcategories are

identified taken into account if they are relying on a direct use of

HDFS and MapReduce completely or only partly with the use of

other intermediary solutions.

8.1.1. Hadoop-native triplestores

Native HDFS-MapReduce triplestores are not relying on any

already existing solution that uses Hadoop either for storing or

querying data. They are built from scratch for the use of the HDFS

file system to store RDF graphs and MapReduce for execution of

SPARQL queries.

In the category of Hadoop-native triplestores we have SHARD

[52], HadoopRDF [53] and CliqueSquare.

HadoopRDF stores RDF data triples into HDFS based on a

predicate-oriented partitioning and performs decomposes queries

respectively in MapReduce jobs. It keeps as many joins as possible

in each job to reduce the number of jobs. This strategy can lead to

high time costs especially when the value of predicates are

unknown and multiple files have to be uploaded in this case to

process queries.

SHARD is also a Hadoop-triplestore that distinguish itself by

the subject oriented RDF data storage and an iterative query

processing which is also subject-oriented. For each subject it stores

all its triples with their predicates and objects in one line. For

processing a query, it creates a pattern matching job for each triple

pattern in the query and executes a join with the result computed

up to this job. This strategy leads of course to enormous running

times.

8.1.2. Hadoop-nonnative triplestores

With the category of Hadoop-nonnative triplestores, we mean

those triplestores that directly use other existing

HDFS/MapReduce general data management solutions for the

handling of RDF data. Examples of RDF stores in this category are

PigSPARQL [54] and RAPID+ [55], [56], “Jena-HBase” and

“Hive+HBase” [57].

The triplestore “Hive+HBase”, for example, uses

functionalities of HBase that uses HDFS for managing data and

Hive that also offers a data warehousing module.

The reliance of Hadoop-nonnative triplestores on other

existing Hadoop data storage and processing existing solutions is

an advantage of such triplestores since such solutions are for use

in a general context and offer therefore to the triplestores possible

ways for further development with components related for

example to integration of other data sources and for incorporating

other functionalities related to data analytics and also to transaction

management.

However, the major drawback for both Hadoop-native and

Hadoop non-native triplestores is the high communication costs

because of unavoidable disk input and output operations during the

execution of the task of MapReduce jobs phases when dealing with

massive RDF data. In the case of Hadoop-nonnative triplestores,

the translation of SPARQL queries to the query languages of the

engines on these triplestores rely also adds extra costs.

8.2. Spark based triplestores

Spark's solution is based on storing processed data and

intermediate results in main memories of computing nodes and

keeping a history of the computations for recovering lost data in

case of failures. This let Spark enhances speed since the switching

to disk is not frequent as it is in the case for Hadoop MapReduce

executions. At the base of computation, Spark uses the so called

Resilient Distributed Datasets (RDDs) which are collections of

data partitioned into chunks distributed on the computing nodes

and kept as much as possible in main memory. Such RDDs are

represented as Java objects.

Spark also provides a module for SQL. SQL querying is done

on RDDs which enables fast querying through the parallel

computation offered by Spark across the nodes while benefiting

from the use of memory to store RDDs. SQL querying on external

data like Hive data is also done by loading such data into Spark

RDDs.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 230

Spark is used by the triplestores SPARQLGX [58], S2RDF

[59], SPARQL-Spark [60], PRoST [61], TripleRush [62] and

Presto-RDF [63].

The triplestore S2RDF (“SPARQL on Spark for RDF”) tries to

minimize times of query processing by reducing the amounts of

data to keep in memory. For this, it uses a schema for RDF data

that extends the predicate-oriented partitioning schema already

presented in subsection 6.1.1.3 with additional pre-computed

tables. The main idea behind this schema is to reduce the size of

data to be loaded into memory when dealing with joins within the

queries to be processed. This has the advantage of avoiding input-

output hard disk operations since spark keeps data in memory for

programs execution. For two distinct predicates tables T1 and T2,

S2RDF pre-computes and stores into HDFDS three semi-join

tables of those (s,o) pairs of T1 for which, respectively, s is a

subject in the second, o is a subject in T2 and s is an object in T2.

A limitation of S2RDF is the need for additional functionalities for

the automatic launching of an efficient updating of the semi-join

tables each time a deletion of some existing triples or an insertion

of new ones happen.

With regards to the aforementioned characteristics of Spark

based triplestores, such triplestores have the advantage over

Hadoop ones of largely reducing RDF data processing costs since

the input-output operations are largely reduced due to the fact that

RDF data and intermediary data is mainly kept partitioned in

memories of processing nodes during the processing stages.

8.3. Flink based triplestores

Flink is natively developed for data streaming and offers

massive real time streaming functionalities. It also offers APIs for

data mining operations on streams. Flink can be considered as a

Big Data engine for event streaming while Spark can be considered

as a Big Data engine for micro-batch streaming.

Libraries & APIs

Python API Table API FlinkML … Gelly

Kernel
Distribution

Deployment

Centralized Cluster Cloud

Storage

Centralized Cluster Cloud

Figure 12: Flink architecture

 Flink is developed in Java and Scala and provides an API for

the processing of graphs called Gelly. Components of Flink are

presented in Figure 12.

FLINKer [64] is an example of a triplestore that is based on

Flink and provides therefore RDF data streaming. In FLINKer,

Gelly graphs are built from RDF triples and then loaded in the

Flink system to be handled. This graph representation is a strong

positive point of FLINKer since it allows easy graph partitioning

and distribution of data processing among nodes. For RDF data

querying FLINKer uses Flink data processing operators on Gelly

graphs to generate query optimization plans based on Flink

parallelization contract programming approach (PACT) for a

parallel execution.

Though these advantages of FLINKer, it still needs adding

some functionality for more user involvement with regards to

possible extensions of FLINKer with APIs for data representation

based on Gelly graphs and for data analytics purposes. Also,

FLINKer lacks elements for transaction management.

9. Stores for Constrained Devices

Micro computing has made it possible to integrate

programmable modules with memories for data storage in devices

with reduced capacity. Various devices with such modules have

been developed in recent years for various applications (edge

devices, sensors, etc.). The integration of RDF processing systems

has also become possible for such small peripherals despite their

limited memory capacity. In the category of triplestores for

constrained devices we have μRDF store [65], RDF4Led [66] and

Wiselib [67].

The μRDF store was developed with the aim to make the

exchange and treatment of RDF data possible in the world of

“internet-of-things” (IoT). It was tested for micro-controllers with

memories ranging from 8 to 64 kB and with an internet connection.

The tests include the storage of RDF data as well as SPARQL

querying using basic SPARQL constructs.

RDF4Led, on the contrary, addresses RDF data exchange for

lightweight edge devices. Such devices are largely common in IoT

as well as in Cloud computing. The RDF4Led built-in system

comprises a physical storage with an indexing strategy of triples,

an intermediary buffering unit and a query engine. Efficiency of

RDF4Led has been proven for devices with some hundreds of

Mbytes in main memory and with a storage capacity of 16 GBytes.

Figure 13: Main Categories of Triplestores

10. Comparison with Related Works

We notice that most existing works concentrate on a specific

type of triplestores for reviewing or categorizing triplestores

principally with limited characteristics or for comparing query

processing times. We principally mention the works in [68] for the

case of relational stores, in [69] for NoSQL stores, in [70] for P2P

stores and in [71] for Big Data stores.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 231

Contrary to these works, our approach comes with a consistent

and detailed categorization with a focus on the storage and query

processing characteristics. Figure 13 presents the main categories.

As already mentioned, some of existing triplestores can be part of

several categories.

For other issues related to detailed comparison criteria for RDF

stores we refer to our work in [72].

11. Conclusion

The enormous acceptance of RDF in many fields has led to the

development of various triplestores for the management of RDF

data with each triplestore exhibiting its own characteristics. The

variety of triplestores is of course a result of the variety of

application use cases and of the various characteristics of data to

be handled. Such characteristics are mainly related to data variety,

to the volumes of data and to the data management tools and

technologies. In this work we gave an extensive categorization of

existing triplestores while identifying, for each established

category its associated key features that make it to be treated

separately, and presenting its underlying RDF data processing

capabilities. We mainly focused on the data processing techniques

used by the systems of each category as well as the modes of their

deployment for the processing of RDF data and queries. The list of

the different categories of triplestores is indeed established according

to destination machines if they are for constrained devices, for

desktops or for clusters, as well as depending on the technologies

on which they are based: relational, non-relational, Cloud, P2P or

Big Data. The categorization is also illustrated by reviewing within

each category its representative RDF triplestores while

highlighting advantages and disadvantages of the technology on

which they are based in the context of RDF data characteristics and

giving some suggestions for possible extensions.

With the given categorization, users will be able to identify the

best suited triplestores for their use cases. Also, triplestores

designers will be able to adequately focus on the relevant features

to consider for the challenging task of design and development of

RDF stores or to identify possible extensions of existing stores

dependently on the targeted data management types and the tools

at hand.

Conflict of Interest

The authors declare no conflict of interest.

12. References

[1] K. Alaoui, M. Bahaj, "Semantic oriented data modeling for enterprise
application engineering using semantic web languages," International

Journal of Advanced Trends in Computer Science and Engineering, 9(3),

3229–3236, 2020, doi:10.30534/ijatcse/2020/116932020.
[2] K. Alaoui, M. Bahaj, "Semantic oriented data modeling based on RDF,

RDFS and OWL," Advanced Intelligent Systems for Sustainable

Development (AI2SD’2019), 4 - Advanced Intelligent Systems for Applied
Computing Sciences, M. Ezzyani (Ed.), Springer AISC 1105, 411–421, 2020,

doi:10.1007/978-3-030-36674-2_42.

[3] K. Alaoui, "A categorization of RDF triplestores," Smart City Applications,
SCA-2019, October 2–4, 2019, Casablanca, Morocco, ACM International

Conference Proceeding Series, 2019, doi:10.1145/3368756.3369047.

[4] T. Neumann, G. Weikum, "RDF-3X: a RISC-style engine for RDF," VLDB,
1, 647–659, 2008, doi:10.1145/1453856.1453927.

[5] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, "Efficient RDF storage and

retrieval in jena2," Proceedings of the 1st International Conference on
Semantic Web and Databases, SWDB 2003, 120–139, 2003.

[6] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, S. Zampetakis,

"CliqueSquare: Efficient Hadoop-based RDF query processing," BDA’13 -
Journées de Bases de Données Avancées, Oct 2013, Nantes, France. 2013.

<hal-00867728>, https://hal.inria.fr/hal-00867728/document, 2013.

[7] F. Goasdoué, Z. Kaoudi, I. Manolescu, J.A. Quiane-Ruiz, S. Zampetakis,
"CliqueSquare: Flat plans for massively parallel RDF queries," ICDE, 771–

782, 2015, doi:10.1109/ICDE.2015.7113394.

[8] K. Zeng, J. Yang, H. Wang, B. Shao, Z. Wang, "A distributed graph engine
for web scale RDF data," VLDB, 6(4), 265-276, 2013,

doi:10.14778/2535570.2488333.

[9] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, "Evaluating SPARQL
queries on massive RDF datasets," 1848–1851, 2015,

doi:10.14778/2824032.2824083.

[10] J. Wielemaker, W. Beek, M. Hildebrand, J. van Ossenbruggen, "ClioPatria:
A SWI-Prolog Infrastructure for the Semantic Web," Semantic Web, 7(5),

529–541, 2016, doi:10.3233/SW-150191.

[11] C. Hu, X. Wang, R. Yang, T. Wo, "ScalaRDF: a distributed, elastic and
scalable in-memory RDF triple store," 22nd International Conference on

Parallel and Distributed Systems, IEEE, 2016,

doi:10.1109/ICPADS.2016.0084.
[12] O. Erling, I. Mikhailov, "RDF Support in the Virtuoso DBMS," In: Pellegrini

T., Auer S., Tochtermann K., Schaffert S. (eds) Networked Knowledge -

Networked Media. Studies in Computational Intelligence, 221. Springer,
Berlin, Heidelberg, 2009, doi:10.1007/978-3-642-02184-8_2.

[13] S. Harris, N. Gibbins, "3store: efficient bulk RDF storage," First

International Workshop on Practical and Scalable Semantic Systems, 2003.
[14] S. Harris, N. Lamb, N. Shadbolt, "4store: the design and implementation of

a clustered RDF store," 5th International Workshop on Scalable Semantic
Web Knowledge Base Systems, 94–109, 2009.

[15] J. Broekstra, A. Kampman, F. van Harmele, "Sesame: A generic architecture

for storing and querying RDF and RDF schema," The Semantic Web —
ISWC 2002, (Editors: I. Horrocks and J. Hendler), Lecture Notes in

Computer Science, 2342. Springer, 2002, doi:10.1007/3-540-48005-6_7.

[16] C. Weiss, P. Karras, A. Bernstein, "Hexastore: Sextuple indexing for
semantic web data management," VLDB’08, August, 2008, Auckland, New

Zealand, 2008 VLDB, ACM, 2008, doi:10.5167/uzh-8938.

[17] D. J. Abadi, A. Marcus, S.R. Madden, K. Hollenbach, "Scalable Semantic
Web Data Management Using Vertical Partitioning," 33rd International

Conference on Very Large Data Bases, 411–422. VLDB, 2007.

[18] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, A. Rasin, N. Tran, S. Zdonik, "C-

Store: a column-oriented DBMS," 31st International Conference on Very

Large Data Bases, VLDB, 553–564, 2005, doi:10.1145/3226595.3226638
[19] D. Abadi, A. Marcus, S. Madden, K. Hollenbach, "SW-Store: a vertically

partitioned DBMS for Semantic Web data management," VLDB Journal

18(2), 2009, doi:10.1007/s00778-008-0125-y.
[20] Y. Wang, X.Y. Du, J.H. Lu, X.F. Wang, "FlexTable: using a dynamic

relation model to store RDF data," 15th International Conference on

Database Systems for Advanced Applications, 580–594, 2010,
doi:10.1007/978-3-642-12026-8_44.

[21] M. Sintek, M. Kiesel, "RDFBroker: a signature-based high-performance

RDF store," 3rd European Semantic Web Conference, 363–377, 2006,
doi:10.1007/11762256_28

[22] H. MahmoudiNasab, S. Sakr, "AdaptRDF: adaptive storage management for

RDF databases," International Journal Information Systems, 8(2), 234–250,
2012, doi:10.1108/17440081211241978.

[23] C.-M. Chao, "An object-oriented approach for storing and retrieving

RDF/RDFS documents," Tamkang Journal of Science and Engineering,
10(3), 275-286, 2007, doi:10.6180/jase.2007.10.3.10.

[24] V. Bönström, A. Hinze, H. Schweppe, "Storing RDF as a graph," First Latin

American Web Congress (LA-WEB 2003). IEEE, 2003,
doi:10.1109/LAWEB.2003.1250279.

[25] E. Oren, R. Delbru, "ActiveRDF: Object-oriented RDF in Ruby," ESWC

Workshop on Scripting for the Semantic Web, http://ceur-ws.org/Vol-
181/Paper2.pdf, 2006.

[26] M. Atre, J. A. Hendler, "BitMat: A main memory Bit-matrix of RDF triples,"

5th International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS’09). Citeseer, 33. (2009).

[27] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, L. Liu, "TripleBit: A fast and

compact system for large scale RDF data," VLDB, 6(7), 517-528, 2013,
doi:10.14778/2536349.2536352.

[28] R. Mutharaju, S. Sakr, A. Sala, P. Hitzler, "D-SPARQ: distributed, scalable

and efficient RDF query engine," ISWC (Posters & Demos), 261–264, 2013.
[29] M. Banane, A. Belangour, "RDFMongo: A MongoDB Distributed and

Scalable RDF management system based on Meta-model," International

Journal of Advanced Trends in Computer Science and Engineering,

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 232

8(3), ,2019, doi:10.30534/IJATCSE/2019/62832019.
[30] P. Cudré-Maurou, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth,

F. L. Keppmann, D. Miranker, J. F. Sequeda, M. Wylot, "NoSQL databases

for RDF: An empirical evaluation," The Semantic Web – ISWC 2013,
(Editors: H. Alani et al.), Lecture Notes in Computer Science, 8219. Springer,

2013, doi:10.1007/978-3-642-41338-4_20.

[31] A. Aranda-Andújar, F. Bugiotti, J. Camacho-Rodríguez, D. Colazzo, F.
Goasdoué, Z. Kaoudi, I. Manolescu, "AMADA: web data repositories in the

Amazon cloud," 21st ACM International Conference on Information and

Knowledge Management, CIKM’12, Maui, HI, USA, 2749–2751, ACM,
2012, doi:10.1145/2396761.2398749.

[32] L. Zou, M. T. Özsu, L. Chen, X. Shen, R. Huang, D. Zhao, "gStore: A graph-

based SPARQL query engine," VLDB Journal, 23(4), 565-590, 2014,
doi:10.1007/s00778-013-0337-7.

[33] A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, G. Lausen, "S2X: Graph-

Parallel Querying of RDF with GraphX," VLDB Workshop on Big Graphs
Online Querying, Big-O(Q). 2015, doi:10.1007/978-3-319-41576-5_12.

[34] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, P. Castagna "Jena-HBase:

A distributed, scalable and efficient RDF triple store," International
Semantic Web Conference on Posters & Demonstrations Track (ISWC-

PD'12), Volume 914, 85–88, ACM, 2012, doi:10.5555/2887379.2887401.

[35] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, N. Koziris,
"H2RDF+: high-performance distributed joins over large-scale RDF

graphs," IEEE International Conference on Big Data, October 2013,

doi:10.1109/BigData.2013.6691582.
[36] G. Ladwig, A. Harth, "CumulusRDF: Linked Data Management on Nested

Key-Value Stores." 7th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2011) at the 10th International Semantic

Web Conference (ISWC2011), 2011.

[37] R. Punnoose, A. Crainiceanu, D. Rapp, "RYA: a scalable RDF triple store
for the clouds," International Workshop on Cloud Intelligence. ACM, 4,

2012, doi:10.1145/2347673.2347677.

[38] D. Le-Phuoc, J. X. Parreira, V. Reynolds, M. Hauswirth, "RDF on the go:
An RDF storage and query processor for mobile devices," ISWC-PD'10:

Proceedings of the 2010 International Conference on Posters &

Demonstrations Track - Volume 658, 149–152, 2010.
[39] A Barry Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, R. Velkov.

"OWLIM: A Family of Scalable Semantic Repositories," Semantic Web,

2(1):33–42, 2011, doi: 10.3233/SW-2011-0026.
[40] A. Harth, J. Umbrich, A. Hogan, S. Decker, "YARS2: a federated repository

for querying graph structured data from the web," in Proc. 6th International

Semantic Web Conference, 211–224, 2007, doi:10.1007/978-3-540-76298-
0_16.

[41] S. Gurajada, S. Seufert, I. Miliaraki, M. Theobald, "Triad: a distributed

shared-nothing rdf engine based on asynchronous message passing," ACM
SIGMOD, 2014, doi:10.1145/2588555.2610511.

[42] M. Cai, M. Frank, B. Yan, R. MacGregor, "A subscribable peer-to-peer RDF

repository for distributed metadata management," Web Semantics: Science,
Services and Agents on the World Wide Web 2, 109–130, 2004,

doi:10.1016/j.websem.2004.10.003.

[43] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, A.
Papadakis-Pesaresi, "Atlas: Storing, updating and querying RDF(s) data on

top of DHTS," Journal of Web Semantics 8(4), 271–277, 2010,

doi:10.1016/j.websem.2010.07.001.
[44] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M.

Palmér, T. Risch, "EDUTELLA: a P2P networking infrastructure based on

RDF," In D. Lassner, D. De Roure, A. Iyengar, editors, Eleventh
International World Wide Web Conference, WWW 2002, May 7-11, 2002,

Honolulu, Hawaii, 604–615. ACM, 2002, doi:10.1145/511523.511525.

[45] A. Matono, S., Mirza, I. Kojima, "RDFCube: A P2P-based Three-
dimensional Index for Structural Joins on Distributed Triple Stores,"

Databases, Information Systems, and Peer-to-Peer Computing, Trondheim,

Norway, Springer, 2006, doi:10.1007/978-3-540-71661-7_31.
[46] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, T.V. Pelt, "GridVine: Building

Internet-Scale Semantic Overlay Networks," The Semantic Web – ISWC

2004, 3298. Springer, 107–121, 2004, doi:10.1007/978-3-540-30475-3_9.
[47] M. Karnstedt, K. Sattler, M. Richtarsky, J. Muller, M. Hauswirth, R.

Schmidt, R. John, "UniStore: Querying a DHT-based Universal Storage,

23rd International Conference on Data Engineering, ICDE 200, Istanbul,
Turkey, 2007, doi:10.1109/ICDE.2007.369054.

[48] N. Papailiou and I. Konstantinou and D. Tsoumakos, N. Koziris, "H2RDF:

Adaptive Query Processing on RDF Data in the Cloud," 21th International
Conference on World Wide Web (WWW demo track), Lyon, France, 2012,

doi:10.1145/2187980.2188058.

[49] R. Stein, V. Zacharias, "RDF on Cloud Number Nine," Proceedings of the

4th Workshop on New Forms of Reasoning for the Semantic Web: Scalable
& Dynamic, 11-23. CEUR Workshop Proceedings, http://ceur-ws.org, 2010.

[50] M. Wylot, P. Cudré-Mauroux. "DiploCloud: Efficient and scalable

management of RDF Data in the cloud," Transactions On Knowledge And
Data Engineering, 2015, doi:10.1109/TKDE.2015.2499202.

[51] M. Dayarathna, I. Herath, Y. Dewmini, G. Mettananda, S. Nandasiri, S.

Jayasena, T. Suzumura, "Introducing Acacia-RDF: An X10-Based Scalable
Distributed RDF Graph Database Engine," 2016 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2016,

doi:10.1109/IPDPSW.2016.31.
[52] K. Rohloff, R.E. Schantz, "High-performance, massively scalable

distributed systems using the MapReduce software framework: the SHARD

triple-store," Programming Support Innovations for Emerging Distributed
Applications, 1-5, October 17-21, Reno, Nevada, 2010,

doi:10.1145/1940747.1940751.

[53] M. F. Hussain, J. McGlothlin, M. M. Masud, L. Khan, B. Thuraisingham,
"Heuristics-Based Query Processing for Large RDF Graphs Using Cloud

Computing," TKDE, 23(9), 1312 –1327, Sept. 2011,

doi:10.1109/TKDE.2011.103
[54] A. Schätzle, M. Przyjaciel-Zablocki, G. Lausen, "PigSPARQL: Mapping

SPARQL to Pig Latin," International Workshop on Semantic Web

Information Management. SWIM ’11, ACM, New York, NY, USA, 2011,
doi:10.1145/1999299.1999303.

[55] P. Ravindra, H. Kim, K. Anyanwu, "An intermediate algebra for optimizing

RDF graph pattern matching on MapReduce," In G. Antoniou, M. Grobelnik,
E. Paslaru Bontas Simperl, B. Parsia, D. Plexousakis, P. De Leenheer, J.Z.

Pan (Editors), The Semanic Web: Research and Applications - 8th Extended
Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29

- June 2, 2011, Proceedings, Part II, 6644 of Lecture Notes in Computer

Science, 46–61. Springer, 2011, doi:10.1007/978-3-642-21064-8_4.
[56] H. Kim, P. Ravindra, K. Anyanwu, "From SPARQL to MapReduce: The

Journey Using a Nested Triple-Group Algebra," VLDB, 4(12), 1426–1429,

2011, doi:10.14778/3402755.3402787.
[57] A. Haque, L. Perkins, "Distributed RDF Triple Store Using HBase and

Hive," University of Texas at Austin, 139, 2012.

[58] D. Graux, L. Jachiet, P. Genevès, N. Layaïda, "SPARQLGX: efficient
distributed evaluation of SPARQL with apache spark," ISWC, 2016,

doi:10.1007/978-3-319-46547-0_9.

[59] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, G. Lausen, "S2RDF: RDF
querying with SPARQL on spark," VLDB 9(10), 804–815, 2016,

doi:10.14778/2977797.2977806.

[60] H. Naacke, B. Amann, O. Curé, "SPARQL graph pattern processing with
apache spark," Fifth International Workshop on Graph Data-Management

Experiences and Systems, GRADES 2017, ACM, New York, 2017. ,

doi:10.1145/3078447.3078448.
[61] M. Cossu, M. Färber, G. Lausen, "PRoST: Distributed Execution of

SPARQL Queries Using Mixed Partitioning Strategies," 21st International

Conference on Extending Database Technology (EDBT), March 26-29, open
proceedings, 2018, doi:10.5441/002/edbt.2018.49.

[62] P. Stutz, M. Verman, L. Fischer, A. Bernstein, "TripleRush: a fast and

scalable triple store," 9th International Workshop on Scalable Semantic Web
Knowledge Base Systems, Sydney, Australia, 21 October 2013 - 22 October,

2013, doi:10.5167/uzh-80646.

[63] M. Mammo, M. Hassan, S.K. Bansal, "Distributed SPARQL querying over
big RDF data using PRESTO-RDF," International Journal of Big Data, 2(3),

2015, doi:10.29268/stbd.2015.2.3.3.

[64] A. Azzam, S. Kirrane, A. Polleres, "Towards Making Distributed RDF
Processing FLINKer," 2018 4th International Conference on Big Data

Innovations and Applications (Innovate-Data), 2018, doi:10.1109/Innovate-

Data.2018.00009.
[65] V. Charpenay, S. Käbisch, H. Kosch, "RDF Store: Towards Extending the

Semantic Web to Embedded Devices," In: The Semantic Web: ESWC 2017

Satellite Events, 10577, 76-80. Springer International Publishing, Cham,
2017, doi:10.1007/978-3-319-70407-4_15.

[66] A. Le-Tuan, C. Hayes, M. Hauswirth, D. Le-Phuoc, "Pushing the Scalability

of RDF Engines on IoT Edge Devices," Sensors, 20, 2020,
doi:10.3390/s20102788.

[67] H. Hasemann, A. Kröller, M. Pagel, "The Wiselib TupleStore: A Modular

RDF Database for the Internet of Things," CoRR, abs/1402.7228, 2014.
[68] Z. Ma, M. A. M. Capretz, L. Yan, "Storing massive Resource Description

Framework (RDF) data: a survey," The Knowledge Engineering Review,

31(4), 391–413, 2016, doi:10.1017/S0269888916000217.
[69] K. R. Saikaew, C. Aswamenakul, M. Buranarach, "Design and evaluation of

a NoSQL database for storing and querying RDF data," KKU Engineering

Journal. 41, 537-545, 2014, doi:10.14456/kkuenj.2014.38.

http://www.astesj.com/

K. Alaoui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 221-233 (2021)

www.astesj.com 233

[70] I. Filali, F. Bongiovanni, F. Huet, F. Baude, "A Survey of Structured P2P
Systems for RDF Data Storage and Retrieval," In A. Hameurlain, J. Küng,

and R. Wagner (Editors.): TLDKS III , LNCS 6790, 20–55, Springer, 2011,

doi:10.1007/978-3-642-23074-5_2.
[71] M. Banane, A. Belangour, "An Evaluation and Comparative study of

massive RDF Data management approaches based on Big Data

Technologies," International Journal of Emerging Trends in Engineering
Research, 7(7), 2019, doi:10.30534/ijeter/2019/03772019.

[72] K. Alaoui, M. Bahaj, "Evaluation criteria for RDF triplestores with an

application to Allegrograph," International Journal of Advanced Computer
Science and Applications (IJACSA), 11(6), 2020,

doi:10.14569/IJACSA.2020.0110653.

http://www.astesj.com/

