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Automatic Speech Recognition (ASR) technology has the potential to improve the learning
experience of students in the classroom. This article addresses some of the key theoretical
areas identified in the pursuit of implementing a speech recognition system, capable of lesson
summary generation in the educational setting. The article discusses: some of the applica-
tions of ASR technology in education; prominent feature extraction and speech enhancement
techniques typically applied to digital speech; and established neural network-based machine
learning models capable of keyword spotting or continuous speech recognition. Following the
theoretical investigation, a model is proposed for the implementation of an automatic speech
recognition system in a noisy educational environment to facilitate automated, speech-driven
lesson summary generation. A prototype system was developed and improved based on this
model, ultimately proving itself capable of generating a lesson summary intended to bolster
students’ secondary contact with lesson content. This topic-oriented lesson summary provides
students with a lesson transcript, but also helps them to monitor educator-defined keyword terms,
their prevalence and order as communicated in the lesson, and their associations with educator-
defined sections of course content. The prototype was developed using the Python programming
language with a modular approach so that its implemented Continuous Speech Recognition
system and noise management technique could be chosen at run-time. The prototype contrasts
the performance of CMUSphinx and Google Speech Recognition for ASR, both accessed via a
cloud-based programming library, and compared the change in accuracy when applying noise
injection, noise cancellation or noise reduction to the educator’s speech. Proof of concept was
established using the Google Speech Recognition System, which prevailed over CMUSphinx and
enabled the prototype to achieve 100,00% accuracy in keyword identification and association on
noise-free speech, contrasted with a 96,93% accuracy in keyword identification and association
on noise-polluted speech using a noise-cancellation technique.

1 Introduction

Student lesson summaries are a valuable resource for allowing stu-
dents to focus on the key points of a lesson, boosting secondary
contact with lesson content. They allow students to realise which
aspects of a lesson may be more important and streamline the study
process for courses which employ both formative and summative
assessments. Formulating a lesson summary from notes and lesson
content alone can be challenging to students especially when cover-
ing larger segments of course content over a short period of time.
Students are also not all equally capable of creating their own lesson
summaries and often rely on available course material and notes
made during their lessons as study material. These challenges are

also further compounded by a lack of context whenever students at-
tempt to summarise a lesson without integrating with the theoretical
focus of the classroom teaching session. Toward providing a solu-
tion to these challenges of lesson summary generation; this work is
an extension of the paper presented at The 2019 International Multi-
disciplinary Information Technology and Engineering Conference
(IMITEC) wherein a model was proposed for automated lesson sum-
mary generation in a noisy educational environment using keywords
in the educator’s speech as the prompting mechanism for summary
of key points [1]. This extension reintroduces the proposed model,
along with the theoretical background it is based in, reinforced by a
proof of concept prototype system for lesson summary generation
which is used to demonstrate the model’s application.
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Automatic speech recognition (ASR) has been applied in assis-
tive technologies for tasks such as closed captioning, voice search,
command detection as well as keyword identification. It therefore
stands to reason that these applications of the technology may be
applied to the voice of the educator in the educational setting. This
work posits that it is possible to generate a lesson summary, by
transcribing the voice of the educator during a theory lecture and
identifying keywords based on the concepts of the course material
being taught. In support of this theory, the objective of this work
is to establish an abstract model for the application of ASR tech-
nology in the educational setting for generating lesson summaries.
Section 2 provides the theoretical base for the model, focusing in
three broad areas of theory. First, a number of applications of ASR
technologies in education are discussed, particularly as they pertain
to disabled learners and distance-based education. Second, recent
trends in statistical models used to perform ASR and the underlying
machine learning techniques used to design and train these models
are addressed. In addition, voice enhancement and noise manage-
ment strategies are addressed to account for noise pollution in the
educational environment known to negatively affect the accuracy
of ASR technologies and resulting transcriptions. The model itself
is presented in Section 3 and the proof-of-concept prototype is dis-
cussed in Section 4. The prototype is evaluated in Section 5, with a
discussion of test results in Section 6 and the study’s conclusion in
Section 7.

2 Background

This section provides an overview of work related to the concepts
required to establish and propose the model for lesson summary
generation in this work. To that end, Section 2.1 discusses the utility
of ASR as applied to an educational context. The topics of feature
extraction and noise cancellation are discussed in Section 2.2.2, as
these techniques may be used to improve the reliability of speech
features in the educator’s speech during lesson transcription. Having
clearly detectable features is critical in training a machine learning
model to recognise, decode and transcribe speech. Neural networks
are a widely used technique to train such a machine learning model
and Section 2.3 presents a discussion on these techniques, revealing
the trends in the improvement of the technology in recent years. The
cumulative knowledge addressed in these theory sections provide
the theoretical basis for the model and its application.

2.1 Automatic Speech Recognition in Education

ASR is widely known through commercial applications such as
Amazon Alexa, Apple Siri, Microsoft Cortana and the Google As-
sistant [2]. These products enhance the productivity of their users by
providing a means of interaction with a variety of applications. The
use of ASR is, however, not limited to applications of convenience;
it has also found purchase in the domain of education. ASR is one of
the key interfaces that humans use to engage with machines in infor-
mation technology, research in the field has important significance
and the interface itself has wide value in application [3, p.84].

A broad overview is provided by 4 of both the underlying litera-
ture and experiments conducted with regard to ASR in the field of

education. The technology not only holds the promise of helping
students surmount the challenges associated with reading, writing
and spelling [4, p. 66], but also provides a facility for teaching
staff to improve their pedagogical approach [4, p. 69]. A further
application of this technology in the educational space is that it
holds the promise of improving the interactions of deaf and second
language speakers in the classroom [4, p. 66]. Furthermore, many
of the studies included in the work by [4] have found utility as an
emancipatory tool for those with physical and/or learning disabili-
ties, as it allows them to write tests and complete projects by means
of narration; tasks which would otherwise require the services of
a human transcriber. With regard to deaf or hard of hearing stu-
dents, such an ASR intervention could be invaluable if employed
in a classroom environment to provide live captioning or to pro-
vide a lesson transcript after the fact. This may also alleviate their
dependence on a sign language interpreter, transcriber or hearing
aid. It has also been shown that it is possible to integrate an ASR
system into the mathematics teaching process at a primary school
level [5]. In the work conducted by 5, a voice-activated e-learning
prototype was used and it was demonstrated that the use of such
a tool could facilitate the learning experience at a primary school
level, but also demonstrated feasibility up to a tertiary level; being
especially helpful to students who have disabilities, learn on-line or
are studying in a second language.

Beyond its utility in helping students with disabilities and in
overcoming language barriers, ASR is also being applied to aid
in other tasks related to the daily activities of students; including
lesson reflection, group discussions and oral presentations [4, p. 66].
ASR can aid these activities by allowing students to have access to
a lesson transcript, which facilitates a streamlined approach towards
note-taking. It has been shown [6] that ASR technology has def-
inite application in synchronous (real-time) cyber classrooms; an
approach that has been pulled into the limelight with the advent of
the COVID-19 pandemic [7]. Although such a live approach has
been shown to be impeded by issues such as latency and bandwidth,
resulting in students missing portions of the lecture [6, p. 367-368],
the application of ASR could quite easily alleviate this with the lec-
turer providing a transcription of the lesson, generated by ASR from
a full recording of their speech, after the lesson has been delivered.

ASR systems have also been applied to Elicited Oral Response
(EOR) testing. EOR is employed to assess the speaking ability of
an examinee by having them listen to a phrase and then restate the
phrase to the examiner [8, p. 602]. The application of ASR allows
such a test to be conducted automatically, with little to no need
for a human examiner. The feasibility of such an ASR-based EOR
testing process has been demonstrated [8]. It was found that it is a
suitable tool for assessing the validity of content, and is able to do
so reliably and in a practical fashion. It represents a means by which
to support low-stakes decision making, especially when applied
to second language learning. All of these technologies, however,
have their downsides. The transcripts generated with an ASR-based
tool tend to contain many punctuation errors or to eschew punctua-
tion altogether. It also does not account for any recognition errors
which may occur as a result of redundancies in repetitive speech [4,
p. 68]. These shortcomings require manual human intervention or a
third-party grammar analysis application to correct. Furthermore,
a common criticism of using ASR-based technology in a noisy en-
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vironment such as a classroom, is that the accuracy of the ASR
process may be impacted. There are, however, means by which
these noise artefacts could be overcome, minimised or filtered out,
allowing the required high rate of accuracy to be maintained.

2.2 Feature Extraction and Speech Enhancement Tech-
niques for Robust Speech Recognition

This section focuses on prominent feature extraction and speech
enhancement techniques such as noise cancellation and noise re-
duction; with the noise cancelling techniques serving to augment
or compliment feature extraction techniques that are not as noise
robust.

2.2.1 Feature Extraction Techniques used in ASR systems

Although ASR consists of many steps, one of the most important
is undoubtedly that of feature extraction; as this step is used to
highlight which components of an input speech signal will serve
to support the recognition aspect of automated speech recognition.
For speech-based audio data to be employed as meaningful data,
whether for training purposes or in an active ASR system, it needs
to be transformed into a less abstract representation which brings
to fore the distinguishable components of speech in the input au-
dio signal. The work done in 9, p. 3 distinguishes between two
types of features; temporal features (e.g. short time energy and
auto-correlation), which exist within the time domain and spectral
features (e.g. fundamental frequency and spectral flux) which exist
within the frequency domain of a speech signal. A spectrogram is
a time-frequency representation of speech data. It is arguably the
fundamental feature extraction method, performed by applying the
Fast Fourier Transform (FFT) to the speech signal [10, p. 4525] to
transform speech energy through time into frequency estimations
through time. As there is a need to highlight the frequency intensity
related to speech signals, many feature extraction techniques, re-
lated to speech processing, are spectral in nature. The words in most
languages are built from smaller components of speech, known as
phonemes and the various phonemes consist of distinct formants
(fundamental frequencies), evident in their pronunciation. Formants
are defined [11, p. 5176] as being created by the resonance of the
vocal tract and recognisable as the spectral peaks on the frequency-
time spectrum of speech. Therefore, techniques used for spectral
feature extraction are highly applicable to ASR systems, allowing
them to distinguish between the various formants at their distinct
spectral peaks.

Another approach is to apply Linear Predictive Coding (LPC)
to create observation vectors, based on the frame-based analysis
of speech signals. These vectors may provide an estimation of the
poles of the vocal transfer function [12, p .495]. During the process
of performing LPC feature extraction, a signal is run through a
pre-emphasis process to reduce the occurrence of audio pop at the
beginning and end of each frame and to reduce signal discontinuity
between frames. The first of these issues is addressed by the appli-
cation of frame blocking and windowing. This is then followed by
an auto-correlation analysis, applied window-wise, during which
the LPC coefficients are derived as the observational vectors [12][p.
495]. To counter the lack of robustness of LPC with regard to noise,

which may cause interference in the calculation of the coefficients,
another spectral-based feature extraction technique, Relative Spec-
tral Filtering (RASTA), may be applied to extract features from the
spectogram. The intent of RASTA is to enhance the speech charac-
teristics of the signal by means of the reduction of unwanted and
additive noise [12, p. 495]. As part of this technique, a spectral anal-
ysis is performed, after which static non-linearities are compressed,
a filter is applied based on linear band trajectory in the cepstral or
log spectral domain, and then finally, the static non-linearities are
decompressed, resulting in the set of RASTA features [12, p. 495].
As stated by [12, p. 496] RASTA-based feature extraction finds
purchase where speech recognition needs to be performed in a noisy
environment.

Another very widely used feature extraction technique is the
Mel-Frequency Cepstral Coefficient (MFCC). This technique fo-
cuses on audio frequencies in the range 300Hz to 3400Hz, the
critical frequency range of the human vocal tract interpretable by
the human ear [12, p. 495; 11, p. 5176]. MFCC is associated with
a very efficient method of calculation which follows a similar ap-
proach to LPC, in that it involves pre-emphasis of the speech signal,
frame blocking and windowing [12, p. 495]. After the windowing
process, the FFT is applied and the absolute values it returns are
placed in a Mel-filter bank; the log of the filter bank values is calcu-
lated and the final MFCC feature vectors are created by applying the
discrete cosine transform to each Mel-filter bank. Because it relies
on auto-correlaton analysis, MFCC shares the trait with LPC that
it is not noise robust [13, p. 358]; although there are many MFCC
variants, each with their own improvements and compromises [14].
Other feature extraction techniques include Perceptual Linear Pre-
dictive Coefficients (PLP), which are often used in conjunction
with RASTA for improved performance; Wavelet-based features;
and Linear Predictive Cepstral Coefficients (LPCC), an addition to
LPC [13–16]. The work performed in [3, p.83] contrasts LPCC
and MFCC, demonstrating that LPCC generally results in lower
accuracy but has a faster computation rate while MFCC is slower to
compute, but often results in improved recognition accuracy.

2.2.2 Speech Enhancement Techniques for improved ASR

The effect of noise has always been a major consideration when im-
plementing ASR system, as a noisy input signal may interfere with
the feature extraction process. This may yield unreliable speech
features, which in turn leads to a low level of accuracy for the under-
lying ASR model. There are various major sources of noise, namely
background noise from a noisy environment, echoes resulting from
recording in confined spaces, feedback resulting from two-way
communication when a loudspeaker is too close to the recording
device, the background hum caused by an amplifier, quantisation
noise resulting from analog to digital conversion, noise resulting
from the loss of signal quality when compression is applied, and
finally, the distorted signal resulting from reverb, which can also
be considered noise pollution [11, p. 5176; 17, p. 318]. Within
these various noise sources, noise may be classified according to
the following types, which can be mitigated via noise cancellation
techniques, namely narrow-band noise, coloured noise, white noise,
transient noise pulses and impulse noise [11, p. 5177]. The ultimate
goal of a noise cancellation technique is to suppress or de-emphasise
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the noise components within an input speech signal [11, p. 5178].
Speech enhancement is the process of enriching the spectral charac-
teristics of a speech signal to make it easier to recognise by machine.
This process incorporates noise cancellation techniques, but may
also transform the speech signal so that the features within it are
more distinguished. 9, p. 2 discuss the principles behind speech
enhancement, stating that the performance of such a system is mea-
sured based on the quality (detected by human ear) of the enhanced
speech and the residual noise level that remains in the speech after
enhancement. The main objective of a speech enhancement strategy
is to remove any additive noise that exists within a speech signal as
a result of the recording being performed in a noisy environment
[9, p. 8]. The terms speech enhancement and noise cancellation
have become largely synonymous, but 9, p. 9 make the point that
feature selection is optimised by ”selecting the most uncorrelated
features” which often determines the effectiveness of the overall
speech enhancement strategy.

Noise cancellation techniques fall under two broad categories,
namely linear filtering and adaptive filtering [18; 11; 17]. These
noise cancellation techniques may occur in the frequency domain,
the time domain or in both [11, p. 5179]. Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR) are two types of linear
filters [11, p.5178]. The purpose of linear filtering is to remove all
frequencies which exist outside of the desired frequency domain
by moving linearly along the time domain. In the frequency do-
main these filtering techniques fall under four categories, namely
low-pass, band-pass, band-stop and high-pass filters [11, p.5178]. A
combination of these filters may be used to remove all frequencies
existing outside of the interpretable range of the human vocal tract.
This may be done by applying a high-pass filter to remove frequen-
cies below 300Hz and a low-pass filter to remove frequencies above
3400Hz. This approach, however, will not remove noise within the
range of the human vocal tract and may also be problematic in noisy
environments because the characteristics of the noise may vary (in
intensity) over time and as a result it may not be possible to predict
the position in the audio stream at which the noise will occur due to
its non-stationary nature [18, p. 336; 11, p. 5178]. Linear filtering
has utility in cases where the noise levels are more predictable, such
as with amplifier or quantisation noise.

Another form of filtering, the adaptive filter, is based on the
mathematical principle of cancellation. This process combines two
signals to remove the noise from the original. In such an Adap-
tive Noise Canceller (ANC), the original signal contains the desired
speech to serve as input to an ASR process, but also the noise, which
may negatively impact the accuracy of recognition. The second sig-
nal serves as a representation of the noise and is adaptively filtered
from the original speech signal. This second signal is then sub-
tracted from the original signal [11, p. 5178]. This kind of approach
accounts for the dynamic nature of a signal containing speech and
other audio. This presents an approach where the parameters and
band-pass type are adjusted automatically, depending on the signal,
rather than relying on pre-set parameters and a specific band-pass
type [11, p. 5180]. This approach is conducted by performing audio
framing, after which a unitary transform of the time domain for ev-
ery frame to the given transform domain is performed. This allows
filtering to be applied to individual frames; after which the frames
are returned to the time domain by applying the inverse unitary

transform. As a final step, the frames are converted back into a
congruent audio file, representing the noise to be subtracted from
the original audio [11, p. 5179]. An alternative to focusing on the
time domain is to approach the problem from the frequency domain.
Examples of adaptive filters are the Weiner and Kalman filters and
the Recursive Least Squares (RLS) algorithm [17, p. 318]. A Dis-
crete Fourier Transform (DFT), Discrete Cosine Transform (DCT)
or Karhunen-Loève Transform may be used to perform frequency
domain transforms [18, p. 336]. Of these approaches, the compu-
tational efficiency of DFT makes it the most popular [11, p. 5179].
By applying these techniques to an appropriately selected transform
domain, better separation may be achieved between the speech and
noise signals. This could result in improved filter estimation which
may yield superior speech enhancement performance.

This section has discussed a number of feature extraction tech-
niques and the importance of their appropriate selection, especially
in noisy environments. As demonstrated in [19], a feature extraction
technique can be chosen to work in conjunction with its underlying
ASR model along with a speech enhancement strategy for improved
ASR performance.

2.3 Machine Learning Techniques for Automatic
Speech Recognition

Hidden Markov Models (HMM) were widely used in the early de-
velopment of ASR systems. The HMM applies probability theory
to track the likelihood of the phonetic state transitions within words
based on spectral templates of phonetic units which are decoded
from the speech signal to predict voiced utterances. This process
was eventually augmented through the addition of a Gaussian Mix-
ture to each state of an HMM to model the short-time phonetic
units. This combined process is referred to as a Gaussian Mixture
Model Hidden Markov Model (GMMHMM) [20]. The advent of
faster computer processors has made it feasible to train Deep Neu-
ral Network (DNN) models for speech recognition. DNN-based
models deal very well with the high dimensionality of speech data,
using fewer parameters to optimise [21] and have been shown to
outperform GMMHMMs [22] leading to the widespread adoption
of DNN architectures for the purpose of performing machine learn-
ing in ASR. There have been many major improvements since the
first implementations of DNNs for ASR. Two of these improved
architectures, namely Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) are discussed in the following
subsections.

2.3.1 Convolutional Neural Networks

A CNN depends on two additional logical layers for performing
speech recognition, namely convolutional layers, which act as lo-
calised filters, and max pooling layers, which normalise spectral
variation[20]. The series of filters in a convolutional layer are ap-
plied in an over-lapping fashion across acoustic frames that overlap
in time over the entire input space and are often referred to as feature
detectors [23, p 1534; 20]. By modelling the associations between
the frequency and time domains, and using the local filtering and
shared weights of the convolutional layers, a CNN maintains the
correlations between these domains and provides a superior result
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to the input mapping of DNNs [21]. Varying speaking styles also
present a challenge to traditional DNNs as they are not inherently
designed to model the translation invariance resulting from formant
frequency shifts [21]. Convolutional layers combat this through the
use of local filtering and the shared weights. The resulting trans-
lation invariance improves the robustness of the model on diverse
speech signals by allowing speech features to be detected regardless
of their location within local input spaces.

The convolutional layers of a CNN work in conjunction with
the max-pooling layers. Max-pooling layers are used to reduce
the dimensionality of the resulting convolutions by ensuring maxi-
mum filter activation at varying points. This is done to reduce the
dimensionality of the convolutions [20]. The performance of the
speech recognition task, using CNNs, is also improved by perform-
ing pooling in frequency and in time, yielding a robustness towards
speaking rate [21]. Convolutional and max-pooling layers may
also be applied in alternating pairs to further reduce dimensionality.
This improves performance in fully connected hidden layers with
fewer trainable parameters. This added robustness towards varia-
tions in speech styles, provided by the pairing of convolution and
max-pooling layers, allow a CNN to learn the acoustic features for
various classes, such as speaker, phoneme and gender [23, p. 1534].
This is another feature which adds to the superiority of CNNs over
DNNs for analysing speech signals. Studies have also shown that it
is possible to add multiple channels of features, like those from a
cochleogram and a spectogram, as inputs to a CNN. This approach
allows the CNN to learn from multiple sets of features simultane-
ously, providing improved performance over learning from a single
channel [10].

2.3.2 Recurrent Neural Networks

RNNs are very useful for language modelling, but are also capable
of performing predictions with regard to the likelihood of a feature
by making an association based on previously identified spectral
speech features. This makes them highly capable of predicting fu-
ture words or phonetic units based on previously observed words
or phonetic states. RNNs make use of Long Short Term Memory
(LSTM) cells to keep track of any associations identified in the
previous layer with the current layer. RNNs have been employed
[24; 25] for creating robust speech recognition models and these
approaches have been improved upon [26] by implementing a light
gated architecture. It has also been shown [27] that it is feasible
to apply convolution and max pooling as inputs of RNN layers to
perform local filtering and pooling. The condensed features are then
passed to RNN layers, which make use of LSTM cells or Gated
Recurrent Units (GRU) to maintain the contextual associations be-
tween features through time. HMMs have also been combined with
convolution and LSTM to tie phonetic state transitions for speech
recognition [28].

3 Model Overview
This section reintroduces the proposed model, which has been up-
dated since its inception, initially published in [1]. This model
is theorised through background literature review and exploration;
then reinforced by a proof of concept prototype implementation and

the experimentation performed to evaluate it. Figure 1 illustrates
the model using a process flow diagram which demonstrates the
sequence of processes applied and data flow between them that are
applied to generate a topic-oriented lesson summary.

Figure 1: Proposed model for the application of an ASR system used to facilitate
topic-oriented lesson summary generation in a noisy educational environment

The subsections that follow discuss the four main processes
involved in implementing the proposed model to generate a topic-
oriented lesson summary, driven by known keyword terms uttered
by the educator during a recorded lesson.

3.1 Preparation

To capture the speech of the educator throughout the lesson, a mi-
crophone, connected to a recording device is required. There are
a number of microphone options, widely available from commer-
cial retailers. This section discusses two variations of microphone
setup for use in conjunction with the proposed model. These are
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addressed with regard to ease and suitability of use and constraint
on budget, as many of these hardware components are expensive
and are not all appropriate for a lesson recording setup. There are
a number of microphone products to choose from and their quality
and capability of audio capture is what sets them apart. Seemingly,
the most professional, and consequently the most expensive, are
lapel microphones, often used in stage performances and business
presentations. Lapel microphones provide a wireless, high fidelity
(16000Hz) audio capture solution for the educator, which promotes
freedom of movement. These microphones are typically fixed onto
the speaker’s collar and plugged into a transmitter usually attached
at the waist of the speaker, which transmits the stream of their
speech signal to a soundboard of sorts (which could be be inte-
grated into a computer or some other audio mixer) for playback
and storage. Lapel microphones are intended to capture the primary
speaker’s voice, with low gain, so as not to capture background
noise or over-amplify the speech.

In the medium price range, handheld microphones, with wired
and wireless variants, are a more affordable solution for record-
ing the educator’s speech during the lesson. Wireless options can
still be expensive, but promote freedom of movement compared
to their mounted or cabled counterparts. These microphones also
transmit the stream of captured speech directly to an audio mixer
or computer for storage and playback. Wireless recording solutions
provide the most ease of use for the educator or a secondary speaker.
The cheapest option for voice capture is the stereo headset, often
used for voice communication while gaming or with online voice
communication applications like Zoom and Skype. While stereo
headsets can be bought cheaply, wireless variants are also more
expensive and equally bulky, since the microphone cannot usually
be detached from the headset itself and still function. Headsets are
also only designed to capture the speech of the primary speaker and
cabled variants are more suitable for use while seated, once again
limiting the movement of the speaker unless a wireless headset can
be used.

Each of these microphone options are also available with
hardware-integrated noise cancellation. This additional feature can
be costly, but can also remove the need for additional processing for
noise management as the lesson is recorded. The choice of which
recording devices to use should be made based on budget, fitness
of purpose and requirement as well as convenience of use; ideally
with a vision of high audio fidelity for a real-world classroom imple-
mentation, with the lowest permissible functional costs for testing
purposes.

To facilitate voice processing and speech enhancement, dis-
cussed in the next section, a combination of microphones can be
used. In this case, the primary microphone is used to record the
speech of the educator or a student, should they have a question
(to be transcribed), in which case they would need to speak into
the educator’s microphone, with a secondary microphone used to
record environmental noise. A mounted wide-band microphone
is the cheaper solution to consider for recording environmental
noise during the lesson and if appropriately positioned, away from
the educator, toward the back of the classroom, will capture noise
pollution in the classroom without explicitly recording too much
of the educator’s speech. These microphones need to record in
parallel so that their recordings can be easily aligned and used in

combination with a chosen speech enhancement technique whereby
the primary recording of the educator’s speech is enhanced using
the secondary recording of environmental classroom noise to ’can-
cel’ noise captured in the educator’s speech signal by the primary
microphone.

3.2 Speech Processing

Once all the speech of the educator has been recorded for analysis
after the lesson using the equipment setup and an appropriate record-
ing method mentioned in the previous section, the digital speech
must be processed to manage environmental noise. The primary
requirement of this recording is that it must be of the waveform file
format (file extension .wav); the raw, uncompressed audio format
that ASR systems are typically developed and trained to be able
to recognise speech from using an appropriate feature extraction
technique. The quality of the captured audio must be considered
in terms of its cost effectiveness. Improved audio quality results
in larger waveform audio files as the range of captured frequen-
cies as well as the bit depth and sampling rate increases. These
factors contribute to the file size of the lesson audio, and should
be considered carefully, especially if a cloud speech recognition
service will be used to to transcribe lesson audio, as the file will
need to be uploaded for recognition which will take more time if
large audio files are uploaded. If a cloud based ASR solution is
used to transcribe the recorded lesson, the audio may need to be
segmented in overlapping windows of appropriate duration before
the ASR system will transcribe the audio due to file size limitations
put in place by the ASR service. Resulting segments of lesson
transcript will also need to be aligned according to this overlap. In
addition, should the audio need to be stored on a web server to be
made available to students for review purposes, a large file size will
also contribute to storage costs, data usage and buffer time.

Classrooms are notoriously noisy environments owing to the
number of students, inevitable chatter, chairs shuffling, corridor
activity and a myriad of other possible noise generating events.
For this reason, speech enhancement, wherever possible should not
be overlooked when implementing speech recognition technology
in the educational environment. In the proposed model, speech
enhancement is an optional process within the Speech Processing
block, and will require the application of a linear or adaptive fil-
ter on the recorded lesson audio should this option be taken. This
sub-process is optional because if the chosen ASR model uses a
noise robust feature extraction technique, applies its own speech
enhancement technique or if a noise cancelling microphone is used,
then there may not be a need for additional processing for noise
management. Over application of speech enhancement can also
degrade the educator’s speech to a point that it is no longer recog-
nisable by ASR. Speech enhancement should always be considered
for classroom applications of ASR technology, but it can be also
be accommodated inherently by the feature extraction technique
of the ASR system if this technique is noise robust (e.g. RASTA).
As stated in the background section, LPC and MFCC are not noise
robust feature extraction techniques and will from the application
of speech enhancement.

Applying a Speech Enhancement technique will typically re-
quire a distinct waveform audio recording of the noise-polluted
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speech of the educator during the lesson, recorded by the primary
microphone as well as a distinct parallel recording of the noise
pollution itself occurring within the classroom, recorded by a sec-
ondary microphone. In the ideal recording setup, the noise audio can
then be removed from the educator’s speech signal almost entirely,
resulting in the audible speech of the educator to be analysed by
the chosen ASR system, improving its performance and ultimately
the accuracy of generated lesson summaries. The chosen speech
enhancement technique can be performed during the recording of
the lesson, applied to the real-time speech audio stream, using the
real-time noise pollution audio stream; or alternatively, the lesson
can be recorded in its entirety along with environmental noise and
then the speech enhancement technique can be applied to the result-
ing recording after the lesson once the speech audio and noise audio
have been aligned for cancellation. Most importantly, if deemed
a necessary intervention, a speech enhancement technique should
always be applied prior to ASR.

3.3 Lesson Transcript Generation

The background section covered the capability of ASR systems to
transcribe the speech of the educator. Historically, this has been
the fundamental reason for implementing speech recognition tech-
nology in the educational setting. Lesson transcripts provide many
benefits, notably the potential for content reflection and note taking
as mentioned in [6, p. 369], as well as improved teaching methods
and support of students with disabilities, as described in [4, pp. 65-
66], there are clear motivations for lesson transcript generation. In
the age of information and with the int eruptions in teaching caused
by the COVID-19 pandemic, online learning and video conferenc-
ing are becoming more prevalent approaches to education. In these
learning environments lesson transcripts are an additional resource
for students. Cloud-based ASR systems provide an easily acces-
sible ASR service and can allow researchers to access advanced
ASR Models like Google Cloud Speech Recognition and CMU
Sphinx. An ASR model can be incredibly challenging to develop
from scratch even for an educational institution, due to the mathe-
matical complexities involved in training a machine learning model
and the tremendous amount of training data required to optimise
it, especially for data as diverse as speech. Depending on the avail-
able resources and with recent trends making continuous progress
on ASR performance, the task of lesson transcript generation it-
self might be better suited to a well established, cloud-based ASR
model.

3.4 Educator Tagged Keywords and Course Content

The proposed model capitalises on the transcript-generation process
by analysing the lesson audio to detect, sequence, count and asso-
ciate known keyword terms with course content items, prompted by
the ASR system’s detection of a single utterance of each associated
keyword. The count of the number of times each keyword term
is uttered throughout the lesson audio can also be maintained to
show topic prevalence, allowing students to gauge the importance
of various keywords used throughout the lesson and prioritise the
amount of time they should spend studying associated topics. The
identified keyword terms along with their sequence and utterance

counts should only be extracted/calculated based on the new seg-
ment of lesson transcript (appended to the overall transcript), after
the overlap has been accounted for to avoid duplicate keyword terms
being counted.

For the proposed model to be successfully applied, each section
within the course content must be tagged with one or more keywords
to facilitate the associations between each of the identified keywords
in the lesson transcript, with their relevant sections in the course
content. This can be achieved by creating meta-tags in a database-
bound content management system, storing the relevant keywords
for each section of the course. Since the course content is generated
from these systems by querying the course content database, the
keywords identified through lesson transcription can be queried
against the meta-tags within the course content database. Many
keywords can be tagged to account for different teaching styles and
linguistic preferences. By adding these meta-tags wherever relevant,
the identification of a keyword can trickle down through the entirety
of the course content and highlight all the sections of the course
where the keyword has been tagged. The course content director or
the educator should delineate the relevant keywords in each of their
associated sections within the course content. The educator must
then ensure that they use some of the specific keywords when deliv-
ering the lesson so that the model can highlight these associations.
The keywords that the educator plans to use are then provided as an
input to the transcript generation process to specify which keywords
to look for as the speech of the educator is transcribed. This entails
sufficient lesson planning and familiarity with subject matter.

3.5 Topic-oriented Lesson Summary Generation

Through the generation of the lesson transcript, the full transcript
resulting from segmented ASR performed on the lesson audio, as
well as the recorded keyword details were collected. The keyword
details include the sequence of its utterance and its utterance count.
This information can be summarised and presented to students to
help them reflect on what was covered during the lesson, as empha-
sised in [4, pp. 66-67]. As stated in [4, p. 67] the lesson transcript
acts as the primary resource for clarification of what was directly
communicated during in the lesson. The additional keyword details
captured are supplementary, but allow for the generation of the les-
son summary to be structured in accordance with keyword sequence.
The identified keyword terms and their utterance counts serve to
emphasise the specific topics discussed and their prevalence within
the lesson transcript, further bolstering secondary contact with the
subject matter.

To finalise the lesson summary and present it to students, one
final process must be performed to associate the identified keywords
uttered with their relevant sections in the course content. This is
achieved by iterating through the list of identified keywords and
for each keyword, testing whether it has been tied using meta-tags
to a section of the course content, by the educator. If the keyword
is assigned then the association is made via the database bound
content management system and the section heading along with
any additional information stored in the database (such as the page
number) is added to the lesson summary. Once all of the keyword
information, along with associated course content artefacts have
been extracted, the information can be arranged and presented to
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students for review. The topic-oriented lesson summary could be
structured as follows: first, the details for each keyword term can
be stated or plotted on a pie chart (or bar graph) in accordance
with their sequence and utterance count to show topic prevalence;
second, the sections associated with each keyword can be listed,
aligned with the sequence of their related keyword terms; and third,
the lesson transcript itself can be added to the lesson summary. It
is worth noting that the release of the lesson summary to students
could be delayed to allow for the educator to edit the transcript
(should it be added to the summary); removing redundancies and
adding punctuation where needed to correct mistakes made by the
ASR model during transcription.

4 Proof of Concept Prototype Overview
This section discusses the implementation of the prototype based on
the proposed model. This prototype was developed in the Python
programming language, over versions 3.6 and 3.7, using the Ana-
conda platform with the Spyder Python editor. Python is a flexible,
object-oriented programming language, providing exceptional ac-
cess to various programming libraries written in Python, C and C++

which are appropriate for handling and manipulating digital speech
data. Python was the programming language of choice for the pro-
totype, since it provided access to numerous programming libraries
available within the topic area, made available free of charge by its
longstanding data science community. The subsections that follow
describe the functions of each of the major modules which facilitate
the prototype’s goal of generating a topical lesson summary. Figure
2 shows the class diagram of the proof of concept prototype devel-
oped alongside the model. For simplicity, method input parameters
and return types have been omitted.

4.1 Large Vocabulary Continuous Speech Recognition
(LVCSR)

The LVCSR Class is responsible for all ASR performed by the
prototype. This is achieved through cloud speech recognition ser-
vices made available by [29], an API which provides access to a
number of cloud-based ASR services, some at a cost, and others
free for application development, research and testing. The two
ASR service providers utilised by the prototype were CMU Sphinx
[30] and Google Cloud Speech Recognition [31]. Both of these
providers have made their APIs available free of charge for use in
the development of speech-driven systems. Regardless of provider,
the access methods of this API take as input a single waveform
audio file, which the prototype uploads to the given recogniser via
the World Wide Web. The chosen recogniser then processes this
data on the cloud server and returns the result of transcription of the
uploaded audio. Google Cloud Speech Recognition [31] is based
in a DNN strategy for ASR and reports to perform speech enhance-
ment technique, while [30] is based in a HMMGMM strategy for
ASR and does not perform noise cancellation. Other paid cloud
speech recognition solutions made available by the API in [29]
include IBM Speech to Text and Microsoft Bing Speech Recogni-
tion, among others. What makes this particular ASR service API
so useful is that each recognition service is exposed in the same

way, making the implementation cross-compatible, regardless of the
recogniser chosen at run-time.

The implemented prototype was adapted to generate a lesson
transcript by uploading multiple shorter segments of lesson audio
to accommodate cloud-based ASR using Google Cloud Speech
Recognition and CMU Sphinx. To achieve this, lesson transcripts
were generated by sequencing the overlapping segments of lesson
audio from start to finish; then performing ASR on overlapping
segments of recorded lesson audio with the transcript accumulating
as new audio segments were analysed. The overlap was applied
to account for sudden cuts in the audio mid sentence owing to the
segmentation and also to ensure continuity between the results of
transcribed segments of lesson audio, resulting in a more accurate
lesson transcript once the transcript was aligned and textual overlap
had been accounted for between segments. Through this process of
segmentation analysis, the sequence and a counter of each keyword
term uttered by the educator were maintained.

4.2 The Wave Handler Module

The Wave Handler module facilitates all the necessary access, stor-
age and segmentation of Waveform Audio Specification files associ-
ated with lesson audio analysis. This is achieved using two methods.
The first returns the duration of a WAV file specified by file path.
The duration of the specified file is calculated by dividing the num-
ber of frames in the file by the frame rate of the file, retrieved from
its file header. The result of the division is returned as a floating
point number representing the duration, measured in seconds, of
the specified file. This method primarily serves to determine the
boundaries of a WAV file when accessing or segmenting WAV data,
but is also used by the control loop to iterate the analysis window
over the entirety of the recorded lesson audio.

The second method is used to segment WAV audio and also
takes as input a specified WAV file path as well as a start time and
an end time. The start time and end time parameters are used to
window the speech audio for segmentation and, ultimately, for anal-
ysis by the chosen ASR system. This method also accepts three
optional parameters: a possible WAV file path to a noise sample
WAV file (defaulted to empty), a noise reduction Boolean (defaulted
to false) and a noise cancellation Boolean (defaulted to false) indi-
cating whether the segmented audio should have pseudo-random
noise injection, noise reduction and/or noise cancellation applied
respectively, using the specified noise sample. This allows for any
WAV file to be read and segmented according to appropriate time
intervals, as desired. When a noise sample is specified for injec-
tion and possibly subsequent noise reduction and/or cancellation, a
random interval from within the roughly ten hour noise audio file
is chosen to be used for injection each time the speech audio is
segmented for analysis.

4.3 Database Design for Lesson Summary Generation

In order to establish associations between known keyword terms
and sections of course content, a structure was required to retain
these associations. The structure of choice to meet this requirement
was a MySQL database. This database has three tables: first, a
keywords table, which stores a primary key identity and lower-case
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Figure 2: Class diagram of the proof of concept prototype system based on the proposed model

text for each of the known keyword terms the prototype is concerned
with; second, a content table, which stores a primary key identity
for each course content item, the header text of the course content
item, a potential section number as well as a description; and third,
a keyword-content relational table that ties each keyword term to
one or more course content items. These ties are stored as distinct
combinations of keyword term and content item primary key iden-
tity pairs which can be queried to yield the course content items
associated with any known keyword term that the ASR system has
identified.

In the keywords table, spelling is essential and distinctions
should be made between standardised (American and British En-
glish) spelling. While the associations exist between the identity
values of keywords and course content items, the association can
only be triggered if the chosen speech recogniser identifies the text
of the keyword term while generating the transcript. If the keyword
term is misspelled compared to its recognised counterpart, it will
not be identified and the association cannot be made. This is also
why all string comparisons are performed in lower case since upper-
case characters have different values to their lowercase counterparts.
The prototype is concerned with seventeen keyword terms in total
(four of which are not associated with any course content items),
lists fourteen content items (four of which are not associated with a
keyword term), and maintains fifteen keyword-content associations,

with some associations existing between one keyword and many
course content items.

4.4 The String Handler Module

The String Handler module deals with all text data transferred by
prototype operation between processes. This module has five func-
tions, and all string comparisons implemented by these functions
are performed in lower case. The first two methods are used to split
a sentence (on space characters) into an array of words, and the
second recombines this array back into a sentence in the word order
of the array indices. These functions are used to analyse and align
word sequences during prototype operation. The third function is
defined to remove punctuation and accepts any continuous string as
input; then returns the equivalent string with commas, apostrophes,
full stops, etc removed. This method is also used to facilitate string
comparisons and to ensure that grammatical character differences
do not prevent word sequence matches.

The last two methods of the String Handler module are used to
align transcript segments. The fourth method performs a sequence
match using two string arrays, created by the first method, as input.
This method iterates through the words in the first array and deter-
mines whether the sequence of words in the first array matches the
sequence of words in the second input array. If a match is found,
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this function returns a Boolean true; and if not, it returns Boolean
false. The fifth method in the String Handler module is used to align
transcript segments as the audio is windowed, analysed and tran-
scribed by the speech recogniser. This method applies the previous
sequence match method to identify the index where two given string
arrays align, and then returns the aligned text from the identified
index onward. As input, this method takes two string arrays; the
current transcript (or an empty array if this does not yet exist) and
the most recently transcribed text (converted to an array) as well as
an integer to define how many words in sequence are required to
match, and a second integer to define how deep through the array
the method should search. The last two parameters are dependant
on the duration of the overlap of the speech analysis window and
the maximum number of words in the longest keyword term. This
alignment method also persists with its search once a match is iden-
tified to ensure that the last possible matching index is used to return
the overlapping text, and not simply the first identified match. This
is to prevent transcribed utterances that are repeated from being
matched prematurely, which would result in repeating segments
of the transcript. This alignment is performed with each iteration
of the prototype over the lesson audio, prior to any keyword term
identification and possible association.

4.5 The Aho-Corasick Keyword Search

To identify keyword terms uttered by the educator, an Aho-Corasick
keyword search was implemented. This search algorithm, made
available by [32] was chosen because it is fast and reliable, and
would not result in significant delays when searching for keyword
terms between overlapping windows. Technically, any string-search
algorithm would suffice here, but the Aho-Corasick search was
deemed most appropriate to meet the requirements of the prototype.
This search algorithm is implemented as an automaton whereby
each keyword term that the prototype is concerned with is added
to the watch list of the automaton at run-time. Any known key-
word term can be identified in any potential search string. The
Aho-Corasick automaton searches for keyword terms in parallel,
meaning that the prototype does not need to iterate though each
known keyword term and search for it; instead, the automaton has
its bound keyword terms set at run-time and will search for any of
these terms simultaneously. This behaviour facilitated the identi-
fication and accumulation of keyword term utterances stored by a
customised Keyword Instance class.

4.6 The Lesson Analyser Program

The Lesson Analyser class combines the logic of each of the mod-
ules discussed in the previous subsections to form the execution
algorithm of the prototype for lesson summary generation. The pro-
totype is configured at run-time and requires the path to the recorded
lesson audio; a directory into which to output the lesson summary;
a duration for the analysis window (defaulted to ninety seconds);
a duration for the overlap between analysis windows (defaulted to
fifteen seconds); a string to specify the speech recogniser to use; an
overlap comparison length used by the transcript alignment method
(defaulted to twenty five words); and an overlap comparison match
count (defaulted to four words). In addition, the algorithm accepts a

possible noise audio path to use for noise injection, a noise reduction
Boolean and a noise cancellation Boolean to specify which noise
management technique(s) to apply.

The prototype’s algorithm iterates over the lesson audio in ninety
second windows of data with fifteen seconds of overlap in the data
between them. If a path to a noise file has been specified, the pro-
totype samples a random ninety second window of data from the
noise audio and injects it over the current segment of lesson speech
audio. The windowed audio is then written to a temporary direc-
tory, where it is uploaded via the World Wide Web to the specified
speech recogniser. Once the upload completes, the lesson audio
is transcribed and the text result is returned to the prototype. The
returned transcript text is then analysed for overlap with the exist-
ing transcript text and the new text is appended to the transcript.
The newly appended section of the transcript is then analysed for
known keyword terms and, upon identification, a database lookup
executes to identify the lesson content item(s) that the educator has
associated with the keyword term. In addition, the utterance counts
for each known keyword are maintained or updated. Identified key-
word terms and their associations are then stored in memory and
the loop iterates over the next 75 seconds (analysis window minus
the overlap window) of lesson audio. This process continues until
all the lesson audio has been processed, transcribed and analysed
for keyword terms and associations. Once the process completes,
the information acquired during analysis is handed off to be ordered
and written to a PDF document to be presented to students. This
PDF lesson summary document has three sections: first, a pie chart
demonstrating the keyword terms uttered during the lesson, the se-
quence of their utterance and the number of times each was uttered;
second, the list of associated course content items for students to
review; and third, the lesson transcript. The lesson summary gener-
ated by the prototype is then provided to students, either via email
or in print to support them in their secondary contact with the lesson
material and to point them toward the course content that the lesson
was based on.

5 Evaluation of the Prototype

To test the robustness of the prototype for ASR, keyword term
identification and subsequent association to lesson content, a se-
ries of evaluation metrics were considered and a series of test case
scenarios were established to provide quantitative evidence of the
prototype’s performance. The subsection that follows provides con-
textual definitions of the chosen recorded (base-line) performance
metrics, and the chosen comparative (derived) performance met-
rics used for statistical evaluation of the prototype. After this, the
next subsection defines each of the five established evaluation test
scenarios. These scenarios are established to contrast the potential
for acceptable lesson summary generation of Google versus CMU
Sphinx cloud-based ASR systems against the combined effects of
noise injection, noise reduction and noise cancellation.

5.1 Chosen Prototype Performance Metrics

Since the prototype system is driven by the speech of the educator,
the lesson summary generation process is dependent on the ASR
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system for keyword term identification. Consequently, the accumu-
lation of keyword-term utterances and the association of keyword-
terms to lesson content is also dependant on the implemented ASR
system. If the prototype fails to identify a keyword-term which
is tied (via database relationship) to a lesson association, the as-
sociation will not be made. In this sense, the proposed model is
dependent on the speech recogniser. However, at a functional level,
this dependence is binary in terms of the prototype’s ability to asso-
ciate any correctly uttered keyword term with its database-bound
relationship to course content, defined by the educator. Established
binary predictive machine learning models use base-line metrics
known as True Positives, True Negatives, False Positives and False
Negatives to measure binary predictive performance.

The four base-line performance metrics are defined in [33] and
[34] where the outcomes of the predictive model result in a con-
fusion matrix that describes its positive and negative behaviours.
While the prototype system and reflective proposed model presented
herein isolate the associations between keyword terms and course
content as a database relationship, the ASR component of the proto-
type system either identifies a known keyword term - resulting in
association, or it does not. An example is provided [35] where a
binary classifier for diabetes detection is laid out. Contrasted with
this example, one can think of each keyword identification as an
independent classification resulting in the detection of known lesson
content association. The descriptions of base-line performance met-
rics in the context of the prototype system presented in this work
are described in Table 1.

Table 1: List of recorded performance metrics considered to evaluate the prototype

Recorded
Metric

Known Keyword
Term Recognition

Educator Defined
Association

True
Positives Prediction is +ve Keyword Term has

+ve Association(s)
False

Negatives Prediction is -ve Keyword Term has
+ve Association(s)

False
Positives Prediction is +ve Keyword Term has -

ve Association(s)
True

Negatives Prediction is +ve Keyword Term has -
ve Association(s)

Table 1 defines the measurements recorded by the prototype
during lesson analysis. A true positive occurs when the prototype
identifies a known keyword term uttered by the educator and as-
sociates this keyword term to the correct course content item(s).
Conversely, false negative occurs when the prototype identifies a
known keyword term, but cannot associate the keyword because
there is no required database constraint. A false positive occurs
when the prototype identifies an unknown, spoken keyword term
and associates it with unintended course content item(s). On a
functional level, the prototype should not measure any false posi-
tives given that the relational database constrains the associations
between keyword terms and lesson content. A true negative occurs
when the prototype identifies a known, spoken keyword term, but
there is no association between the keyword term and course con-
tent item(s). Due to the database constraints, true negatives can
be eliminated by ensuring that only keyword terms with existing

associations can be identified by the prototype.
The number of utterances of the keyword term gives the ASR

component multiple attempts at keyword-term identification; how-
ever, if the particular term (e.g. the word “Euclidian”) is not in
the ASR system’s lexicon, then the likelihood of detection falls to
zero and the association cannot be made until further training of the
ASR component. This constraint or dependency of the prototype
on its ASR component is a trade-off between the number of times a
keyword term is uttered and the reliability of the speech recogniser
in identifying the keyword term.

Using the baseline performance metrics described allows for the
measurement of derived performance metrics that can be calculated
to provide a better indication of the prototype system’s performance.
Table 2 defines the formulas according to [33] and [34], which are
used to calculate each of these comparative performance metrics
using the values captured by the baseline performance metrics.

Table 2: List of comparative performance metrics considered to evaluate the proto-
type

Performance
Metric Measurement Formula

Accuracy T P + T N
T P + FP + FN + T N

(1)

Precision T P
T P + FP

(2)

Recall
(Sensitivity)

T P
T P + FN

(3)

Specificity T N
T N + FP

(4)

F1-Score
2×

Recall × Precision
Recall + Precision

(5)

As previously addressed, the prototype’s design constraints and
dependencies, in theory, prevent it from capturing false positives
and can prevent it from capturing true negatives with optimal con-
figuration of the prototype’s database component. Although these
are both measured for, when their values equal zero, they become
trivial to some of the comparative metrics that use them in associ-
ated formulae. In addition to this factor, the third-party nature of
using a cloud-based ASR component abstracts the prototype (as
the user) from the base-line metrics measured by the ASR model
itself when decoding (transcribing) the educator’s speech. Thus, we
cannot measure the ASR model’s performance directly using these
comparative metrics.
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Table 3: List of considered comparative performance metrics to use in evaluating the
prototype system

Performance
Metric Metric Formula

Average
Accuracy

(AA)

∑n
n=1 Accuracyn

N
(6)

where n is the test case num-
ber and N is the total number
of tests conducted for the test
case

Average True
Accuracy

(ATA)

∑n
n=1 T Accuracyn

N
(7)

where FP = 0, TN = 0, n is
the test case number and N
is the total number of tests
conducted for the test case

Global
Average

Accuracy

∑n
n=1 AAn

N
(8)

where n is the test case num-
ber and N is the total number
of tests conducted for the test
case

Global
Average True

Accuracy

∑n
n=1 AT An

N
(9)

where FP = 0, TN = 0, n is
the test case number and N
is the total number of tests
conducted for the test case

The database constraints on the prototype system coupled with
the lack of base-line recognition metrics of the underlying ASR
model, mean that some of the comparative metrics from Table 2
do not truly reflect the intention of the metric in the context of the
prototype system. Because the count of false positives measured
by the prototype will always be zero, precision and specificity were
deemed inappropriate metrics for prototype evaluation from the
outset. This consequently eliminated F1-Score as a potential mea-
sure for contrasting the performance of cloud-based Google and
Sphinx recognition services. If we cater for FP = 0 and TN = 0, our

measure for sensitivity results in the same value for Accuracy. By
this deduction, accuracy was deemed the most appropriate metric to
measure prototype performance. Table 3 provides formulae for the
types of accuracy, measured for the evaluation of the prototype.

The accuracy metrics in Table 3 will provide a measure of ac-
curacy for the prototype over the series of tests conducted across
test cases. To cater for the potential of true negative values being
measured as zero, the Average Accuracy (AA), which includes the
number of true negatives measured, is contrasted with the Average
True Accuracy (ATA) where the number of true negatives measured
is assumed to be zero. These accuracy metrics are reported for
each test case and the Global Average Accuracy and Global Aver-
age True Accuracy is reported across all the test cases to provide
a final measure of prototype performance using the given speech
recogniser.

5.2 Specification of Test Samples

To test the ASR prototype system, two audio readings of the arti-
cle ‘Speech Recognition for Learning’ [36] were recorded using a
stereo headset. The participants, one male and one female, were
encouraged to enunciate their speech as well as possible and to
read at a comfortable pace in their natural voices. In addition to
these two audio recordings, a total of twelve hours of captured class-
room background noise was acquired to use as sample audio for
noise injection. These three audio test samples were all recorded
at 16000Hz with a 256kbps bitrate as signed 16-bit PCM encoded
single channel (mono) waveform audio (.wav).

5.3 Prototype Test Cases

A series of test cases were established to test the prototype system’s
performance using the test samples and performance metrics dis-
cussed. These test cases simulate alternative classroom equipment
setups and environmental noise constraints on the prototype. Table
4 indicates whether the input data had noise injection (NI), noise
reduction (NR) and/or noise cancellation (NC) applied for each of
the test case scenarios, as well as the recogniser used to identify
keyword terms.

Test Case T is established to provide an indicator of the func-
tional performance of the prototype system assuming that the under-
lying ASR system is completely accurate. Rather than performing
speech recognition on the speech audio, this test case instead has
the algorithm operate on the raw text of the document which was
read aloud. This allows for the algorithm to be tested and modified
until it was proven to be working ideally on a functional level, with
its dependency on ASR accuracy removed. Test case A, on the other
hand, is used to measure the prototype’s performance working with
the ASR system to provide a measure of the prototype system’s
accuracy with its ASR dependency, but without any environmental
noise. Test case B introduces this environmental noise by isolat-
ing a random sample within the specified classroom noise sample
audio and overlaying this randomly chosen sample on the speech
audio prior to ASR analysis. This pseudo-random noise injection is
applied at each overlapping window of lesson audio analysis. Test
case B is designed to simulate spontaneous noise that may occur
in the educational environment and be recorded by the educator’s
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microphone as they deliver their lesson. Test cases A and B simulate
a single microphone setup to capture the educator’s voice.

Table 4: Test case scenario specifications used in evaluating the prototypes’ perfor-
mance with different audio pre-processing techniques

Test
Case NI NR NC ASR

System

T FALSE FALSE FALSE Aho-
Corasick
Search

A FALSE FALSE FALSE

Google,
Sphinx

B TRUE FALSE FALSE
C TRUE TRUE FALSE
D TRUE FALSE TRUE
E TRUE TRUE TRUE

Table 5: Sphinx Average Accuracy and Average True Accuracy per Test Case

Test Case Average
Accuracy

Average
True

Accuracy
A 0,6333 0,7000
B 0,3907 0,4730
C 0,1660 0,2350
D 0,5300 0,6170
E 0,4600 0,5490

Global
Average 0,4360 0,5148

Test cases C, D and E are concerned with noise management
interventions and are intended to simulate a dual-microphone equip-
ment setup where one microphone records the educator’s voice and
the other records environmental classroom noise. These recordings
are then aligned, and the recorded environmental noise is used as
input to reduce or cancel environmental noise recorded by the ed-
ucator’s microphone. Note that the prototype would be drastically
less effective if the microphone recording the environmental noise
were also to record the educator’s voice, as the noisy sample would
include the speech, which would then be cancelled or reduced. Thus,
this prototype is not appropriate for a situation where the educa-
tor’s voice is being amplified by a loud speaker. The educator’s
microphone in this case is intended only to record their speech
and inherently, any environmental noise generated in the classroom
which is also captured.

5.4 Prototype Test Results

The prototype was tested one hundred times for each of the test cases
defined in Table 4 using Google Cloud Speech Recognition and then
using CMUSphinx ASR. Test case T was performed without a recog-
niser and instead used the Aho-Corasick search to identify keyword

terms. The prototype was debugged and tested in a cyclical manner
until the results of test case T showed an accuracy of 100% and it
had been demonstrated that the logic used to measure each base-line
performance metric was accurate. Ultimately, the prototype was
able to demonstrate 100% accuracy on test case T and any doubt
of inaccuracy of base-line metric measurement was resolved. This
prompted the next phase of testing of the prototype using a speech
recogniser to transcribe the educator’s speech and then to generate
a lesson summary. Table 5 shows the performance of the prototype
when generating lesson summaries using CMUSphinx cloud-based
ASR.

Table 6 shows the performance of the prototype when generating
lesson summaries using Google Cloud Speech Speech Recognition.

Table 6: Google Average Accuracy and Average True Accuracy per Test Case

Test Case Average
Accuracy

Average
True

Accuracy
A 1,0000 1,0000
B 0,8927 0,9390
C 0,4387 0,5360
D 0,9693 0,9900
E 0,8860 0,9400

Global
Average 0,8373 0,8810

6 Discussion of Prototype Performance
The discussion of test results will centre around the reported Aver-
age True Accuracy across test cases for each recogniser. The results
of the prototype testing reported in Table 5 and Table 6 for test case
A demonstrate a difference in accuracy of 30% for lesson summary
generation between Google Cloud Speech Recognition (CSR) and
CMUSphinx ASR. This can be attributed to the design difference of
these machine learning models. It has been shown that DNN-based
approaches to ASR outperform traditional HMM-based models as
they provide more modelling complexity. When noise is injected
into the educator’s speech in test case B, the performance of both
models declines, but Google CSR is reportedly noise robust so the
drop in accuracy is far less significant than that of CMUSphinx,
where Google had a 6.01% reduction in accuracy, contrasted with a
drop in accuracy of 22.7% for CMUSphinx. Both recognisers saw a
significant reduction in accuracy with noise injection and then with
noise reduction applied in test case C. From a qualitative perspec-
tive, the noise reduction algorithm had the effect of dampening the
speech and was likely de-emphasising spectral formants, leaving
the speech sounding hollow and making it difficult to distinguish
utterances by ear. By contrast, when noise cancellation was applied
instead in test case D, both speech recognisers saw an improve-
ment in performance; with Google improving in accuracy by 5.1%
compared with a greater increase in accuracy for CMUSphinx of
14.4%. This demonstrates that noise cancellation was the ideal
noise management technique applied by the prototype, most notably
with Google CSR which lost only 1% accuracy of lesson summary
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generation when comparing performance without noise injection
as opposed to noise injection with noise cancellation applied. The
results of test case E are the most surprising where noise reduction
and noise injection was applied, a balance in accuracy between
noise reduction and noise cancellation was achieved, seemingly
diminishing the negative effects of the noise reduction technique,
while still removing background noise and retaining the integrity of
the speech signal. Nevertheless, the prototype showed satisfactory
performance using either recogniser under no noise injection, or
while only applying noise cancellation to the noisy speech data.
Overall, using Google Cloud Speech Recognition in combination
with noise cancellation demonstrated the best performance of the
prototype for speech-driven lesson summary generation in a noisy
environment.

7 Conclusion and Future Work

This paper has discussed some of the key topic areas involved in
incorporating ASR systems for use in educational settings. A model
was proposed for the application of an ASR system in a noisy edu-
cational environment to automatically generate a lesson summary,
driven by the speech of the educator. A prototype system was then
developed based on the proposed model and improved and adapted
alongside it. The prototype goes beyond the baseline utility of
transcribing the speech of the educator with additional analysis on
the transcribed text used to identify and associate keyword terms
to course content artefacts, summarising this information by moni-
toring the number of times each keyword is mentioned, providing
a reference point for keyword terms and directing students to the
underlying course content from which they originate via database
bound associations. These relatively simple additions, along with
the lesson transcript can allow for the educator to speak at length
about the given topics, cross-referencing to related course content
artefacts and potentially helping to guide the flow of their lesson,
with the peace of mind that relevant sections are made known to the
students. Additionally, secondary contact with the lesson transcript
after it has been taught helps students with making notes and the ad-
ditional reference points could help in prioritising certain topics and
reaffirming/reinforcing what was communicated during the lesson.

To further the proposed model, future work involves the devel-
opment, testing and classroom implementation of a more advanced
system based on the proposed model and the proof of concept proto-
type presented and argued herein. The classroom prototype would
need to be evaluated using both qualitative and quantitative research
methods. For qualitative evaluation, a survey could be designed to
gauge both student and educator perspectives on the system’s utility,
potential for improvement and the overall sentiment of the system
implemented in the classroom. Quantitative evaluation could be in-
corporated into the survey whereby aspects of the prototype’s utility
could be rated on a Likert scale or Linear Numeric scale to indicate
positive or negative sentiment towards particular aspects of the sys-
tem and the lesson summaries produced. The prototype’s database
components could also be expanded to cater for multiple lessons
across multiple courses and the performance evaluation conducted
in this work could then be applied at various levels to measure
prototype performance on a lesson and course level and also per-

formance contrasted between courses with varying subject matter.
The model could also be improved by automating the definition of
keyword terms and their association with course content items so
that the educator would no longer need to. This could be done using
unsupervised machine learning whereby a machine learning model
would have access to course content and automatically extract and
assign keyword terms to course content artefacts.
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