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Industry 4.0 implementation stipulates effective actuator control. In the present work, a complex
order PIa+ jbDc+ jd (COPID) controller was designed for a fractional order model of a direct cur-
rent (DC) motor system. For comparisons, the DC motor system model was also controlled using
the conventional proportional integral (PI), proportional integral derivative (PID), proportional
resonant (PR) and fractional order PID controllers (FOPID). Time domain results indicated that
the PR controller performed exceedingly well for output signal responses, but fared poorly in
case of control signal specifications. The PI controller responses suffered from high time domain
characteristics for both control and output signals. The PID controller performed moderately in
terms of time domain and peak overshoot metrics. The FOPID controller attained the best time
domain characteristics, but was unable to effectively limit the control and output signal peak
overshoots. It was only the COPID controller, that successfully minimised / eliminated peak
overshoots in control and output signals (0.1 % and 0.0 % respectively). Moreover, the COPID
controller was also successful in limiting the rise, peak and settling times. In addition, Bode
diagram, root locus plot were obtained and system gain parameters were varied to confirm
the robustness of the proposed COPID controller. Thus, COPID controller promises to be an
effective solution towards accurate and robust actuator control in modern manufacturing.

1 Introduction

This paper is an extension of the paper presented at the IEEE In-
ternational Conference on Mechatronics, Robotics and Systems
Engineering, MoRSE 2019 [1]. Therein, a direct current (DC)
motor system was successfully modeled by the application of frac-
tional calculus to closed loop system identification approach. Of the
four identified fractional order models, the best performing model
comprised of three parameters and attained R-squared 0.9942, root
mean square error (RMSE) 0.0084 and sum of squared estimate
of errors (SSE) 0.0711. In the current work, that fractional order
model has been utilised to implement PI, PR, PID, fractional order
PID (FOPID) and complex order PIa+ jbDc+ jd (COPID) controller
designs with an aim to achieve stable and robust control of the DC
motor system with minimum time domain characteristics.

The proportional, integral and derivative (PID) controllers have
been implemented in industrial control systems on a large scale
owing to their simplicity of design and maintenance [2]. Recently,
fractional calculus has been employed to solve various complex

problems in engineering and science [3]–[7]. One of these ap-
plications is designing controllers using fractional calculus. The
fractional order controllers have been shown to exhibit superior
control characteristics in numerous applications including the non-
minimum phase systems [8]–[12]. This is due to the additional two
parameters available for control in the fractional model structure.
The complex order PIa+ jbDc+ jd controller is a logical extension of
the fractional calculus based control as it includes two more param-
eters for control as compared to the FOPID controller [13]–[16].

In [17], the authors implemented a complex order structure to
identify hexapod robot movement on the basis of a transfer function
for the foot-ground system. In [18], the authors obtained a transfer
function to solve a complex order differential equation. In [19],
the author employed genetic algorithm to optimize complex order
controllers for non linear and linear systems. In [20], the authors
investigated robust control of a non linear fuel cell system using
complex order architecture. In [21], the authors modeled HIV in-
fection drug resistance using a complex order model. In [16], the
authors reviewed time domain, stability and frequency domain in

*Corresponding Author: Pritesh Shah, Symbiosis Institute of Technology, Pune, India Contact No. +91 20 28116400 & Email pritesh.ic@gmail.com

www.astesj.com
https://dx.doi.org/10.25046/aj060261

541

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj060261


P. Shah et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 541-551 (2021)

complex order modeling of various systems. In [22], the authors
tuned complex order controller by numerical optimization for a
time delay resonant plant. In [23], the authors tuned complex order
controller using genetic algorithm. In [13], the authors compared
complex controller performances to integral and fractional order
controllers for fractional order systems. They reported superior time
domain characteristics attained by the complex order controllers.
However, they did not apply complex order controllers to a DC
motor system. A complex order controller was designed for DC
motors [24]. However, the designed controller in this work [24] was
unable to minimise the overshoot in the step response. minimizing
peak overshoot in the output signal response is critical to prevent
any undesired process variation which may damage the actuated
machinery in the long run. Similarly, minimizing control signal
overshoots is critical to prevent damage against voltage spikes and
enhance the service life of DC motors in industry [25, 26].

The main contribution of the current work lies in the identifi-
cation of the most suitable DC motor controller design based on
minimal output/control signal peak overshoots and settling times
among the various controllers considered in the scope of the current
study. The following section (2) details upon the controller design
methodology adopted in the current work pertaining to the PI, PID,
PR, FOPID and COPID controllers. Time and frequency domain
results of the investigated controllers are compared and discussed in
section 3. Finally, conclusions of the present work are presented in
the section 4.

2 Controller Design Methodology
The current work addresses the constant torque region for DC motor
modeling and control. The field weakening region (figure 1 ) is not
considered in the present work.

Figure 1: Field weakening region [27]

Following sub-sections describe the PI, PID, PR, COPID and
FOPID controllers for the DC motor system considered in the cur-
rent study.

2.1 PI and PID controller

The PID controller is popular in industry because of its compatibility
with the PLCs and its simple structure[2, 28]. The following PID

controller structure was used for the DC motor system [29].

C(s) = KP + KI

(
1
s

)
+ KD

 N
1 + N 1

s

 (1)

where, N is the bandwidth of the low pass filter on the derivative,
KP is proportional gain, KI is integral gain and KD is derivative gain.
This controller was tuned by the auto tuning capability available
in the Matlab Simulink block. Auto-tuning can be done via time
and frequency based methods. In this work, frequency based auto
tuning method was implemented. In the case of PI controller, KD is
zero and there is no need of derivative filter. It’s structure is given
as follows.

C(s) = KP + KI

(
1
s

)
(2)

2.2 PR Controller

The PI controller yields infinite gain at s = 0 and generally re-
sponds in a slow mode to step inputs without any steady state error.
Moreover, it is unable to trace sinusoidal reference input. The
PR controller yields infinite gain at zero phase shift and resonant
frequency. Its form is given as follows [30]–[32].

C(s) = KP +
KI ∗ s

s2 + ω2 (3)

2.3 FOPID controller

FOPID controllers are based on fractional calculus wherein the
orders of derivation and integration are real numbers [9, 33]. Frac-
tional calculus has been defined in many ways. The following
definitions are generally applied in control system applications [34].

2.3.1 Grunwald-Letnikov definition

The GL (Grunwald-Letnikov) definition is very effective for obtain-
ing numerical solutions of the fractional differential equations [35].
This definition is expressed as follows

aDα
t = lim

h→0

1
hα

[ t−a
h ]∑

r=0

(−1)r
(
n
r

)
f (t − rh) (4)

where, the integer part is represented by [ t−a
h ]; t and a are the

limits of operator; n is an integer subjected to n − 1 < α < n. The
binomial coefficient is expanded as follows -(

n
r

)
=

Γ(n + 1)
Γ(r + 1)Γ(n − r + 1)

(5)

Similarly, the Gamma function in the above equation can also be
defined as -

Γ(x) =

∫ ∞

0
t

x−1
e−tdt,<(Z) > 0 (6)
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2.3.2 Riemann-Liouville definition

The Riemann-Liouville definition is appropriate for the determi-
nation of analytical solutions of simple functions like et, tb, cos(t)
[36]. Riemann and Liouville applied fractional operators to derive
formulae for the integration of arbitrary numbers and for solving
differential equations respectively. The Riemaann-Liouville defi-
nition combines the distinct approaches followed by Riemann and
Liouville in a composite formula expressed as follows -

aDα
t = DnJn−α f (t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

a

f (τ)
(t − τ)α−n+1 dτ (7)

where, J is the integral operator, α is a real number, n is an inte-
ger subjected to n − 1 < α < n and t , a are the limits of integration.
For example, if α is 1.8, n will be two because 1 < 1.8 < 2.

2.3.3 M. Caputo definition

The M. Caputo definition is very popular among engineers because it
directly relates the type of fractional derivative to the corresponding
type of initial conditions [37]. In this definition, initial conditions
like y(0) and y′(0) are allowed; unlike y0.5(0) (fractional conditions)
[8]. The Caputo definition of fractional calculus is given as follows
-

aDα
t =

1
Γ(n − α)

∫ t

a

f n(τ)
(t − τ)α−n+1 dτ (8)

where, α is a real number, n is an integer subjected to n − 1 <
α < n and t, a are the limits of integration. As stated before, frac-
tional calculus is a branch of mathematics wherein the orders of
integration and derivation are real numbers [9, 33, 38]. This real
number feature has a significant impact towards improvement of the
controller performance [39]–[41]. The classical PID Controllers are
particular cases of fractional controllers where λ and µ are equal to
one (figure 2). With reference to the PID plane, this implies that
instead of moving between four fixed points it is possible for λ and
µ to move across the entire plane [42].

Figure 2: FOPID region in λ - µ plane [9]

The fractional PID controller structure implemented in the cur-
rent work (figure 3) is given as follows.

Figure 3: Fractional PID controller structure [43]

C(s) = KP + KI

(
1
s

)λ
+ KDsµ (9)

where λ is the order of integration and µ is the order of derivative.
In FOPID, there are two more parameters in the controller structure
as compared to PID controller. Because of this, two more specifica-
tions can be achieved using the FOPID controller. The parameter
range of orders is generally accepted 0 to 2 for the stability of the
closed loop system because the locations of closed-loop poles lie
mostly in the first sheet of Riemann [44] in this order range. The
same approach has been followed in the current study as well. The
fractional differentiator can be synthesised for FOPID controller
application using Oustaloup’s recursive approximation method as
follows -

sv ≈ K
N∏

k=−N

1 + s/ωk

1 + s/ω′k
(10)

ωu =
√
ωhωb (11)

ω
′

0 = α−0.5ωu;ω0 = α0.5ωu; (12)

ω
′

k+1

ω
′

k

=
ωk+1

ωk
= αη > 1 (13)

ω
′

k+1

ωk
= η > 0;

ωk

ω
′

k

= α > 0 (14)

N =
log(ωN/ω0)

log(αη)
(15)

where ωh, ωb are the approximation frequency bounds, v is the order
of the fractional differentiator, N is the order of fractional differ-
entiator approximation and K is a constant. In the present work,
the fractional order controller was implemented using FOMCON
toolbox for fractional calculus [45, 46]. In this toolbox, fractional
calculus can be approximated using the refined Oustaloup approx-
imation method by varying the order and frequency ranges. This
toolbox can be used for time domain, frequency domain and many
more analyses for fractional calculus. The fractional order parame-
ters in the current study were tuned based on the approach given in
related literature [39].

2.4 COPID controller

Just as the FOPID controller is an extension of the classical PID
controller, similarly the COPID controller is an extension of the
FOPID controller. In complex order PID controller, integration and
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Figure 4: Complex PIa+ jbDc+ jd controller structure

derivative orders are expressed in the form of a complex number
(x+jy). The genesis of COPID controller is related to the CRONE
controller (third generation) [47, 48]. The complex order PID con-
troller structure for the DC motor fractional order model in the
current study is given as follows [14, 20, 49].

C(s) = KP + KI

(
1
s

)a+ jb

+ KD (s)c+ jd (16)

where, a, b, c, d are the complex order controller orders. The integral
gain component of this equation is simplified as follows -

KI

(
1
s

)a+ jb

= KI

(
1
s

)a (
1
s

) jb

(17)

KI

(
1
s

)a+ jb

= KI

(
1
s

)a

∗ eln ( 1
s )

jb

(18)

KI

(
1
s

)a+ jb

= KI

(
1
s

)a

∗ e jb ln ( 1
s ) (19)

KI

(
1
s

)a+ jb

= KI

(
1
s

)a

∗

[
cos

(
b ln

(
1
s

))
+ j sin

(
b ln

(
1
s

))]
(20)

It is necessary to omit the imaginary part of the above equation
because it cannot be synthesized for time domain implementation
of the closed loop system with COPID controller in Simulink [14].

KI

(
1
s

)a+ jb

= KI

(
1
s

)a

∗

[
cos

(
b ln

(
1
s

))]
(21)

Similarly, the derivative part of Eq. (16) is simplified as follows -

KD ∗ sc+ jd = KD ∗ sc ∗ s jd (22)

KD ∗ sc+ jd = KD ∗ sc ∗ eln s jd
(23)

KD ∗ sc+ jd = KD ∗ sc ∗ e jd ln s (24)

KD ∗ sc+ jd = KD ∗ sc ∗
[
cos (d ln s) + j sin (d ln s)

]
(25)

As followed in case of the integral gain component, it is neces-
sary to omit the imaginary part of the derivative equation as well
because it cannot be synthesized for time domain implementation
of the closed loop system with COPID controller in Simulink [14].

KD ∗ sc+ jd = KD ∗ sc ∗ [cos (d ln (s))] (26)

Thus, Eq.(16) may be rewritten for tuning as follows.

C(s) = KP+KI

(
1
s

)a

∗

[
cos

(
b ln

(
1
s

))]
+KD∗sc∗[cos (d ln (s))] (27)

The tuning of complex order controller is more challenging than
FOPID and classical PID controller as there are seven parameters in
the complex order controller. In this work, Eq. (27) was utilised for
the implementation of complex order controller. This controller was
tuned based on the tuning principles provided in literature [39, 50].
Figure 4 shows the structure of the COPID controller implemented
in Simulink (Matlab). The initial value of the integer order inte-
gration was assumed to be a small number for this implementation.
For all controllers, high control signal overshoots were limited by
adding saturation block in the closed loop system models.
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Figure 5: Pole zero map for fractional order DC motor plant model

3 Results and Discussions

The fractional order DC motor system model derived in the work re-
ported in the 2019 IEEE International Conference on Mechatronics,
Robotics and Systems Engineering (MoRSE) [1] is given below.

G(s) =
0.7992

s1.9018 + 80.0440
(28)

It may be noted that this model has a low DC gain. Low DC
gains in second / higher integer order system models are expected to
cause the system responses to become sluggish due to the presence
of the non-dominant pole(s) in the pole zero map. Similar effect
is observed in the pole zero map (figure 5) of the fractional order
system model considered in the current study as well. However,
the presence of a large number of dominant poles keep the system
response fast; overcoming the adverse impact of low DC gain. This
model consisting three parameters was employed for designing the
PI, PR, PID, FOPID and COPID controllers in the current work.
The PI controller design for the DC motor system was obtained as
follows -

C(s) = 10 + 92.6736
1
s

(29)

Figures 6 and 7 show the output and control signal plots for the PI
controller respectively.
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Figure 6: PI controller output for fractional order DC motor plant model
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Figure 7: Control signal for PI controller output for fractional order DC motor plant
model
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Similarly, the following PR controller structure for the DC motor
system was generated -

C(s) = 1.0469E05 +
−8.2380E08 ∗ s

s2 + 10000
(30)

The output and control signal responses for the PR controller are
depicted in figures 8 and 9 .
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Figure 8: PR controller output for fractional order DC motor plant model
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Figure 9: Control signal for PR controller output for fractional order DC motor plant
model

The auto tuned PID controller architecture for the fractional
order DC motor plant model considered in the current study was
obtained as follows -

C(s) = 0.00001 + 92.5368
1
s

+ 0.001
100

1 + 100 1
s

(31)

Figure 10 shows the output response of the PID controller output,
whereas figure 11 shows the control signal plot for the same.
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Figure 10: PID controller output for fractional order DC motor plant model
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Figure 11: Control signal for PID controller output for fractional order DC motor
plant model

The fractional order PID controller structure was obtained as
follows -

C(s) = 125 + 1125
1

s0.95 + 51s0.77 (32)

Figures 12 and 13 depict the output and control signal responses for
this FOPID controller, respectively.

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

O
u

tp
u

t

Output

Set Point

Figure 12: Fractional PID controller output for fractional order DC motor plant
model
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Figure 13: Control signal for Fractional PID controller output for fractional order
DC motor plant model

The complex order PID controller structure was obtained as
follows -

C(s) = 11 + 125
1

s0.99+ j0.7 + 27s0.5+ j0 (33)

Figures 14 and 15 show the output response and the control signal
of the complex controller designed for the DC motor system.
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Figure 14: Complex PIa+ jbDc+ jd controller output for fractional order DC motor
plant model
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Figure 15: Control signal for complex PIa+ jbDc+ jd controller output for fractional
order DC motor plant model

Table 1 gives the output signal rise and peak time domain speci-
fications of all controllers explored for the DC motor system consid-

ered in the current study. The PR controller is successful in attaining
the least rise time and peak time among all controllers. The FOPID
controller attains the second best peak and rise time characteristics.
The COPID controller registers higher rise and peak times as com-
pared to FOPID output signals. The PI and PID controller output
signals consume relatively higher rise and peak times. Figures 16
and 17 showcase graphical presentations of output signal overshoots
and settling times.

Figure 16: Output signal overshoots (%)

Figure 17: Output signal settling time (sec)

The FOPID controller achieves the least settling time, whereas
the COPID controller minimizes peak overshoot percentage to zero.
In contrast, the PR, PI, PID and FOPID output signals record over-
shoots of 1.3 %, 1.0 %, 1.4 % and 2.2 % respectively. This result
proves the efficacy of the complex order controller in limiting the
output signal overshoot for the DC motor system. The DC motor
system output is the output shaft revolutions per minute. In indus-
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Table 1: Time domain specifications of output signals

PI PR PID FOPID COPID
Rise Time (sec) 3.9 0.0003 2.2473 0.1946 1.7366
Peak Time (sec) 5.7 0.0005 5.4711 0.5011 5.0000

Table 2: Time domain specifications of control signals

PI PR PID FOPID COPID
Rise Time (sec) 2.47 - 2.5285 0.0001 1.7365
Peak Time (sec) 9.75 - 6.6835 0.0184 4.7587

trial systems, DC motor outputs actuate machinery for achieving the
stipulated processing control. Eliminating peak overshoots in the
DC motor output signals is important to avoid undesirable process
variations which may be detrimental and even hazardous in some
cases.

Figure 18: Control signal overshoots (%)

Figure 19: Control signal settling time (sec)

Table 2 shows the control signal time domain characteristics for
the five controllers under the scope of the current study. In this case,
the PR controller performed very poorly and registered extremely
high overshoot (of the order of 10E6); rise, peak and settling times.
The FOPID control signals attained minimum rise and peak times,
followed by COPID and PID control signals. The PI control signals
achieved much higher rise and peak time metrics. Figures 18 and 19
showcase graphical presentations of control signal overshoots and
settling times. The PI controller also under performed with respect
to the settling time metric. However, it performed much better in
case of control signal peak overshoots. Similarly, the PID controller
attained very low peak overshoot but suffered from higher settling
time. The FOPID controller attained minimum settling time, but
was unable to keep the control signal overshoot in check. Thus,
it was only the COPID which consistently outperformed all other
controllers with minimum peak overshoot and second best settling
time characteristics. For DC motor systems, the control signal cor-
responds to the voltage input. Excessive voltage spikes (as evident
in FOPID control signal response) may prove detrimental to the mo-
tor’s active service life and might even result in premature damage.
It is important for the controller design to ensure protection to the
DC motor against high voltage shocks. Moreover, faster settling
of the input voltage corresponding to the desired output set point
is desirable for a highly responsive system. The COPID controller
exhibited reliable performances in both aspects.

Figures 20 and 21 show the Bode plot and root locus diagram
for the closed loop system with COPID controller. The Bode plot
indicates that the gain and phase margin for the closed loop system
with COPID controller is∞. This implies that the system is robust
against variations in the system parameters. Similarly, the location
of closed loop poles to the left side of the s-plane in root locus
diagram also proves that the DC motor system performance is stable
and robust under complex order controller. Figure 22 depicts the
robustness of the COPID controller against variations in the gain
of the DC motor system. The system gain was varied with values
of 0.5, 0.8, 2, 5, 10 and 20. The gain variations do not have any
significant impact on the settling trends of the COPID controller
responses, which is a positive indication.

4 Conclusions

The current work is an extension of the one reported in the 2019
IEEE International Conference on Mechatronics, Robotics and Sys-
tems Engineering (MoRSE). Building upon the fractional order
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Figure 20: Bode plot for complex order controller for fractional order DC motor plant model

Figure 21: Root locus for complex order controller for fractional order DC motor plant model

model of the DC motor system identified in the previous work; the
current work involved design of PI, PR, PID, FOPID and COPID
controllers for the same. Primary results indicate that the PR con-
troller performed very well in output signal responses; but fared
very poorly in control signal time specifications. The PI controller
also performed poorly in terms of output and control signal rise,
peak and settling times. However, it performed comparatively better
in terms of peak output and control signal overshoots. The PID con-

troller’s performance was mediocre in terms of control and output
signal peak, rise and settling times. Its performance was also not
very impressive with regards to the output signal peak overshoots,
but it did much better in minimizing the control signal overshoot
percentage. The FOPID controller attained very low rise, peak and
settling times for its output signals. However, it suffered from the
highest peak overshoots for both output and control signal responses.
The COPID controller exhibited excellent performance with regards
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Figure 22: Responses of complex order controller for various values of K

to minimizing / eliminating the peak overshoots in the control (0.1
%) and output signal (0.0 %) responses. COPID controller also at-
tained the second best low range rise, peak and settling time values.
Minimisation and possible elimination of the peak overshoots in
the control and output signals is vital for ensuring the safety of the
controlled process machinery as well as for the long service life
of the DC motor based industrial actuators. The COPID controller
fulfills this requirement without sacrificing the settling time much.
In addition, the Bode plot, root locus diagram and stable controller
responses under varying system gain parameter confirm the stability
and robustness of the designed complex order controller for the
fractional order DC motor plant model considered in the current
study. Thus, complex order controllers can be extensively and safely
applied towards industry 4.0 oriented implementation of advanced
industrial control systems such as smart actuators and collaborative
robots.
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