
Advances in Science, Technology and Engineering Systems Journal
Vol. 6, No. 2, 763-775 (2021)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Frequency Scaling for High Performance of Low-End Pipelined Proces-
sors
Athanasios Tziouvaras*,1, Georgios Dimitriou2, Michael Dossis3, Georgios Stamoulis1

1Department of Computer Engineering, University of Thessaly, Volos, 38221, Greece
2Department of Computer Science, University of Thessaly, Lamia, 35100, Greece
3Department of Computer Science, University of Western Macedonia, Kastoria, 52100, Greece

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 30 November, 2020
Accepted: 02 March, 2021
Online: 27 March, 2021

Keywords:
Better-than-worst-case
Timing analysis
Adaptive clock scaling
IoT processors
RiscV design implementation
Timing speculation

In the Internet of Things era it is expected that low-end processor domination of the embedded
market will be further reaffirmed. Then, a question will arise, on whether it is possible to
enhance performance of such processors without the cost of high-end architectures. In this
work we propose a better-than-worst-case (BTWC) methodology which enables the processor
pipeline to operate at higher clock frequencies compared to the worst-case design approach.
We employ a novel timing analysis technique, which calculates the timing requirements of
individual processor instructions statically, while also considering the dynamic instruction
flow in the processor pipeline. Therefore, using an appropriate circuit that we designed within
this work, we are able to selectively increase clock frequency, according to the timing needs
of the instructions currently occupying the processor pipeline. In this way, the error-free
instruction execution is preserved without requiring any error-correction hardware. We evaluate
the proposed methodology on two different RiscV Rocket core implementations. Results with the
SPEC 2017 CPU benchmark suite demonstrate a 12% to 76% increase on the BTWC design
performance compared to the baseline architectures, depending on the appearance rate of
instructions with strict timing requirements. We also observe a 4% to 37% increase on power
consumption due to the operation of the pipeline at higher clock frequencies. Nevertheless, the
performance increase is up to nine times larger than the power consumption increase for each
case.

1 Introduction

Traditional microprocessor design ensures an error free instruction
execution on general purpose processors. According to the estab-
lished model, the designer designates the clock frequency and the
voltage values of the processor, so that no timing violation of the
critical path occurs. Thus, the design revolves around the timing
analysis of the worst-case scenario, and the critical path acts as a
strict timing threshold, constraining the processor performance.

In contrast to the traditional model, the better-than-worse-case
(BTWC) paradigm attempts to relax any critical path restrictions
through timing speculation (TS), by scaling up and down the pro-
cessor voltage or clock frequency, allowing timing errors to occur.
The resulting errors can then be resolved by an integrated rollback
error correction mechanism. Such a paradigm presents many design
opportunities for performance enhancement and power reduction.

This paper is an extension of work originally presented in MO-

CAST conference in [1] and is loosely based on the BTWC design
paradigm, primarily focusing on the performance increase of the
processor pipeline for low-cost processors. In this work, we present
instruction-based clock-scaling, a methodology that improves per-
formance by executing instructions in varying clock frequencies,
according to the opcode of the executing instructions. A proposed
timing analysis methodology detects instruction opcodes that may
run at high speed, as well as instruction opcodes that must run
at low speed. The instruction pipeline is then fed with multiple
clock signals, multiplexed in a way that when a critical instruction
is decoded, a slower clock is selected for the cycle that exhibits
the maximum timing delay, reverting to the previous clock in the
following cycle. Thus, the typical clock selected can be faster than
the one designated via traditional timing analysis.

Such an approach diverges from classic BTWC design tech-
niques, in that we utilize the knowledge about each individual
instruction timing requirements, obtained from our timing anal-

*Corresponding Author: Athanasios Tziouvaras, attziouv@inf.uth.gr

www.astesj.com
https://dx.doi.org/10.25046/aj060288

763

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj060288


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

ysis methodology. With that knowledge, our model foresees any
upcoming timing errors and corrects them a priori. In this way,
we eliminate any execution error probability, thus no error recov-
ery mechanism is deployed, as each instruction is certain to meet
its timing requirements. Since performance penalty induced by
error correction is non-trivial, our more deterministic error detec-
tion mechanism avoids the performance implications of traditional
BTWC techniques. Furthermore, the developed methodology is
architecture independent making it applicable to any given single-
issue in-order-execute design, without requiring intrusive changes
to its microarchitecture.

The above technique has been implemented and tested on two
different post-layout RiscV Verilog processor implementations, us-
ing the SPEC 2017 CPU benchmark suite. The same tests have been
applied on the implementations without clock-scaling, and the re-
sults obtained show a clear improvement in processor performance,
between 12% and 76%, and an average 3.7-fold improvement in
performance-to-power ratio, despite the expected increase in power
consumption due to high frequency operation. Further comparison
with state of the art TS methodologies highlights the effectiveness
of our technique when considering throughput improvement.

The rest of this paper is organized as follows. Section 2 contains
a research review on the topics of our research, whereas Section 3
discusses the proposed processor timing analysis technique. Our
opcode-based clock-scaling technique is presented in detail in Sec-
tion 4. The processor model used and the experiments conducted
are described in Section 5. Finally, Section 6 gives the conclusion
of our work.

2 Previous research

Following decades of standard worst-case processor design method-
ologies, a considerable amount of research is being conducted in
BTWC designs in the last years. The BTWC is a paradigm that
encompasses various techniques which approach the critical path
timing requirements more flexibly than traditional designs [2]. In
particular TS, which is a type of BTWC design, violates critical
path restrictions, allowing and then correcting any resulting exe-
cution errors. Such technique enables researchers to experiment
with energy-performance tradeoffs and manages to increase the
performance and lower the power consumption of the circuit [3].

The application of TS on processor designs has led to the de-
velopment of Razor [4], [5]. Razor employs TS to improve the
performance-to-power ratio of the design, and utilizes “shadow
latches”, which identify and correct the timing errors made by the
alteration of the voltage. This correction mechanism operates in
real time and ensures the error free instruction execution. Another
research work focuses on the dynamic frequency scaling of a su-
perscalar processor, supported by error recovery mechanisms to
compensate for resulting timing errors [6]. In that work, researchers
deploy both local and global error correction mechanisms, which
ensure a correct instruction execution when the processor is over-
clocked at higher frequencies.

BTWC design methodologies have also proven able to address
the ever increasing process variation effects or the uncertainty
caused by the environment and the fabrication process of the in-

tegrated circuits [7]. As a result, a significant amount of research
compensates for process, voltage and temperature (PVT) variation,
while exploring possible TS benefits [8]. In such cases, probabilistic
methods can be deployed to model the PVT fluctuations [9], while
guardbanding has been proposed in one work to safeguard the circuit
against timing violations [10]. Another work shows that process
variation effects result in pipeline imbalances as long as timing delay
is concerned [11]. In order to overcome such problem, a framework
has been developed to tighten the timing of the circuit using a time
stealing technique that equalizes the timing delays of each pipeline
stage. A third work exhibits that the mitigation of PVT effects
may be achieved by a properly developed framework [12]. In that
work, the researchers manage to model the PVT effects and create a
framework that enables error-power and error-frequency tradeoffs.
Finally, another work demonstrates novel techniques which may be
used to design PVT resilient microprocessors [13]. Such techniques
include the monitoring of critical paths by sequential circuits that
detect timing errors, or the monitoring of each pipeline stage for
worst-case delays. In both cases, the designers also propose error
recovery mechanisms and exhibit a significant performance increase
by utilizing clock frequency scaling.

Previous work has also shown that designers may obtain effi-
cient energy-performance tradeoffs at a higher architecture level
[14] when applying BTWC paradigms. A marginal cost analysis
demonstrates the potential of circuit voltage scaling on architec-
tural level, highlighting the optimal operational point of a target
processor. Furthermore, the design process of a microprocessor
could also be aligned to facilitate TS friendly microarchitecture
adjustments. Specifically the optimization of the most frequently
exercised critical paths may result in clock frequency scaling and
lower power dissipation on existing TS architectures [15]. Along the
same lines, the slack redistribution of the most frequently occurring
timing paths of a processor may lead to architectures with lower
power consumption and minimum error rate [16]. Another work in
[17] proposes a TS cache design which manages to lower the energy
consumption of the system while maintaining high cache hit ratios
within various cache organizations.

As the TS paradigm revolves around scaling the clock frequency
in real time, research is also focused on clock adaptation techniques.
Specifically, previous work in [18] manages to adapt the clock fre-
quency of a POWER 7 processor core by adjusting the voltage level
in firmware level. Combined with a critical path monitoring mecha-
nism, researchers achieve voltage scaling when the critical path is
not excited while using the available timing margin as a guardband
mechanism. Another work utilizes a unary coding scheme to en-
able the PLL to quickly adapt to the required clock changes in real
time [19]. This approach can be applied on a single core clock to
enable its dynamic frequency change without imposing significant
delays. A research that also underlines the importance of a robust
real time clock adaptation scheme is [20]. In this work, researchers
manage to deploy a clock adaptation scheme which can reduce the
clock frequency in an AMD 28nm microprocessor core improving
the power efficiency of the system. This approach utilizes a phase
generator which can modify the clock’s phase in order to stretch its
period. Similarly, in [21] authors employ a dynamic clock adjust-
ment technique on a simple processor pipeline to adjust the clock
frequency according to the application type that is being executed

www.astesj.com 764

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

on the processor pipeline.
TS designs are often prone to exhibit metastable behavior, re-

sulting in non-deterministic timing phenomena which should be
taken into account when designing a TS processor [5], [22]. This
issue usually appears when the input data arrives close to a rising
clock edge, resulting in the possibility of undetected errors. In the
course of minimizing the metastable behavior of timing speculative
circuits, design methods have been proposed, utilizing a time bor-
rowing technique alongside of a careful examination of the data path
timing, which simplifies the issue of metastability by moving such
behavior to the circuit error path only [23]. Despite the progress
being made on this issue, a more recent work claims that circuit
metastable behavior in TS designs is not yet efficiently addressed
[22]. In this regard the mean time between failures of such designs
discourages any possible industrial applications.

Another thought provoking aspect in BTWC techniques is the er-
ror recovery mechanism and the performance penalty it imposes on
the design [24]. Due to that penalty significant effort has been made
on the improvement of the deployed error prediction mechanisms
[25]. While some designs employ statistical methods to success-
fully detect specific instruction sequences which have pre-analyzed
timing requirements [10], others tend to focus on monitoring the
critical path excitation by individual instructions [26], [27]. An-
other approach revolves around the identification of timing critical
instructions during runtime, using that knowledge to improve the
energy-efficiency ratio of the processor [28]. Finally a study on the
cmos recovery mechanism reveals the impact of the technology on
such techniques, as researchers develop a hardware model sufficient
to simulate timing speculation designs [29]. The same research also
underlines the importance of a fine-grained error recovery mech-
anism in BTWC designs. Although the penalty imposed by the
execution or by the unsuccessful prediction of a critical instruction
is relatively low, results indicate that the performance loss due to
error recovery is non-trivial. Moreover, in some extreme cases the
design’s performance deteriorates to the point that the TS design
displays lower throughput than the baseline processor [10].

From all the above reviewed work we have concentrated our
interest on the issues of error recovery in the TS design paradigm,
as well as on the issues of metastability observed in that paradigm.
Our motivation has been to study such issues and come out with a
novel technique that exploits TS in a way that any possible spec-
ulation errors are detected dynamically and recovered before they
appear, thus avoiding the costly error recovery mechanisms, and at
the same time eliminating metastability phenomena altogether. In
the following sections we introduce our opcode-based timing analy-
sis and clock scaling technique for error-free timing speculation in
pipelined microprocessors.

3 Timing Analysis in Processor Datapaths

3.1 Static and Dynamic Timing Analysis

Timing analysis is a technique traditionally used in order to analyze
the timing requirements and timing delays of a digital circuit. By
employing the traditional timing analysis approach, designers des-
ignate the optimal clock frequency for a design which is usually
derived by the timing requirements of the critical path.

Standard static timing analysis (STA) is performed either at flop
to flop or at input to output basis. STA is used to calculate the
worst-case delay of the circuit and to detect any timing violations
that may occur under certain design constraints. STA can be used to
identify the critical path of the circuit, which is a major factor for
the clock period selection of the design. However, STA is overly
pessimistic, as it calculates the worst-case slack for timing paths
and thus, it is considered inefficient for the BTWC paradigm.

On the contrary, dynamic timing analysis (DTA) is used to ex-
tract more accurate timing information from a digital circuit. DTA
utilizes a large set of vectors which are used as circuit inputs that ex-
cite the circuit paths for various input combinations. An exhaustive
DTA will calculate every possible timing path for a given circuit, at
a very high time cost though. DTA eliminates the path pessimism
as it analyzes the timing requirements of every possible input of
the circuit. Although DTA would be more appropriate for BTWC
design timing analysis, its time cost renders its usage impossible on
large designs, as it trades accuracy for completion time.

3.2 The Pseudo Dynamic Timing Analysis Concept

The technique proposed in this work revolves around the BTWC
design paradigm. In this sense, we develop a timing analysis method-
ology that extracts timing information from a circuit to enable us
to take advantage of the timing differences of the circuit paths. To
this end, we analyze each individual instruction supported by the
processor, with respect to the unique timing requirements it presents.
In order to analyze each instruction independently, we isolate from
the circuit all the possible paths an instruction may take, while
declaring the rest of the paths as false. We iterate this process until
we exhaust all the available supported instructions. In the sequel,
we perform STA on each separate path group related to each indi-
vidual instruction. As a result, the timing results we obtain depict
the worst-case delay of each instruction, instead of depicting the
worst-case delay of the processor critical path.

In order to present our technique, we refer to a standard tim-
ing analysis tool, with which we conduct timing analysis on the
post-layout netlist of a recent open-source 64-bit six-stage pipelined
processor implementation of the Risc-V ISA. Figure 1 depicts our
initial approach to the problem. First, we pick an instruction sup-
ported by the processor. Then, we examine the processor ISA to
identify the instruction opcode, while ignoring any register or data
fields facilitated within the instruction word. For that opcode we
commence a “case analysis” operation, in which the designer may
set any of the circuit inputs to constants, and let the tool being uti-
lized perform a flop to flop timing analysis given the fact that some
of the circuit inputs are set to a fixed value. In our case these values
represent the current instruction opcode field. The tool propagates
any generated signals through the processor pipeline to analyze the
timing of each pipeline stage separately while performing STA. As
a result we calculate the timing requirements for each pipeline stage
separately with respect to the fixed instruction opcode and thus,
for the corresponding instruction. That report gives the worst-case
scenario of the analyzed instruction with respect to timing.

www.astesj.com 765

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

Figure 1: The proposed timing analysis methodology which studies each instruction
as an individual entity.

In the sequel, we keep record of the slowest pipeline stage tim-
ing, before moving on to the next instruction. Finally we pick
another instruction and reiterate this process, until all the available
instructions are exhausted.

It becomes clear that the proposed timing analysis methodology
is a hybrid between STA and DTA. In this sense, it performs STA
for each instruction of the processor ISA, but it further analyzes
all possible instructions, giving a DTA flavor to the result. How-
ever, it is not a full DTA, since it only varies the opcode field of
the instruction word, thus not considering input values neither for
any other field of the instruction word nor for any other part of the
circuit. In particular, the implementation of the architecture we
work on supports 215 instructions, which means that we only need
215 analyses in our method, instead of 264 which would be needed
for a full DTA on the variations of the instruction word alone, or
many more if we were to consider other circuit inputs as well. On
the other hand, our approach is not as pessimistic as classic STA,
and with only little higher complexity it can produce designs that
exhibit significantly better performance than designs produced by
STA. Our second approach presented next can produce even more
efficient designs.

3.3 Dynamic Opcode Value Changes

Using the proposed technique we manage to analyze the timing
requirements of each processor instruction individually. To this end,
we are iteratively affixing certain circuit inputs at constant voltage
values. Specifically, we are bounding the opcode field bits to static
binary values in order to analyze each instruction behavior.

In real time digital circuits, inputs change in a dynamic way
as new values are stored into the pipeline registers at the rising
edge of the clock signal, immediately before they are needed and
used. As a result, new instructions are fetched for execution on
each clock cycle and thus, inputs representing the opcode bits of
each instruction are not constrained to fixed voltage values; instead
they dynamically change, resulting in an unpredictable transient
timing behavior in every pipeline stage after the fetch stage. Such
behavior appears at the decode stage due to the opcode bits per se,
as well as at all subsequent stages due to the control bits produced
by the opcode bits and is propagated to such stages. For this reason,
the discrepancy between our initial concept and a real time system
behavior in timing deviations should be addressed.

Figure 2: The timing analysis methodology which compensates for the dynamic
voltage change of the opcode field.

In order to compensate for the dynamic voltage change in the
processor pipeline inputs, we employ a modification of the afore-
mentioned timing analysis methodology. Since our focus is now
around the timing variance created by the dynamic behavior of the
instruction opcode field, we consider the opcode as a bit sequence
whose length is defined by the ISA. Consequently we have to take
into account every possible value transition which leads to the cur-
rently analyzed bit sequence. Normally the amount of all possible
combinations grows exponentially with the length of the sequence.
We consider this approach unsuitable for our needs as its high time
cost makes it impossible for practical application. Furthermore, we
aim at the development of a methodology, which can be employed
to analyze any ISA, without depending on the instruction opcode
length of the design.

The solution we propose to resolve this is based on the obser-
vation that in processor architectures not all possible bit transitions
lead to valid bit sequences of the opcode field. More specifically,
as the instructions succeed one another during the instruction fetch
stage, the number of valid opcode bit combinations is constrained
by the number of the instructions supported by the ISA. So instead
of analyzing the timing delay of each possible opcode bit sequence
transition, we focus on the analysis of each possible instruction
succession.

Figure 2 depicts the proposed solution, which relies on the
initial concept as described earlier, augmented with the dynamic
value change compensation approach we discussed. In this solution,
we analyze each instruction’s timing requirements individually as
before, but instead of using fixed voltage values to describe the
currently examined instruction, we analyze each possible opcode
transition that could lead to the opcode bits of the current instruction.
Such transitions represent any rising and falling voltage values that
could result in that particular bit sequence. The timing analysis of
such cases is studied individually, while the timing analysis tool
propagates all generated signals through the processor pipeline. We
still use the “case analysis” function, as it can be expanded to in-
clude rising and falling voltage change. When we complete the
timing analysis of an instruction, we save the worst-case delay. Af-
terwards we proceed with the analysis of the next instruction, until
all supported instructions are exhausted.

The method we proposed in this section uses STA to find the
worst-case delay path of each individual instruction. But in order to
achieve an accurate timing result we utilize an exhaustive iterative
analysis resembling more now that of a DTA method. However,

www.astesj.com 766

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

even if we restrict value variations within the instruction opcode,
with an opcode field of x bits, a standard DTA approach would
require 2x iterative timing analyses to effectively analyze the timing
of the opcode length, as each possible x-bit combination may lead to
the required sequence. Instead, using our methodology, the number
of iterations needed for each opcode analysis is only equal to the
total number of supported instructions, in our case 215 iterations.

The proposed timing analysis technique lies somewhere be-
tween STA and DTA, closer to STA with respect to complexity, but
closer to DTA with respect to output quality. We call this technique
Pseudo Dynamic Timing Analysis (PDTA). In the following section
we discuss the application of PDTA to adaptively scale the clock
frequency of the core pipeline of a processor.

4 Clock scaling using opcode-based
pseudo dynamic timing analysis

4.1 Adaptive clock scaling in pipelined processors

Adaptive clock scaling is often used for power control in modern
high-performance processor architectures. Processor cores can be
slowed down when not in full use, in an attempt to reduce power
consumption and avoid overheating. In some cases, cores can be
sped up for a limited time, in order to boost performance for cycle-
hungry applications. On the other hand, low-cost processors that
are preferred for embedded and low-performance systems can also
use clock scaling in order to increase performance, especially if this
is achieved in a fairly cheap manner.

Another way to effectively scale up the clock frequency is to
deepen the processor pipeline. In this way each stage’s latency is
reduced and the system may operate lower clock periods. Previous
works in [30] and [31] demonstrate that deepening the processor
pipeline results in an increase in circuit area and power consumption
due to the implementation of additional pipeline registers, Further-
more, deep pipelined processors require more complicated forward-
ing, control and stalling mechanisms thus, further impairing the
design’s area and power requirements. As a result, authors in [30]
and [31] conclude that the increase of the pipeline stage amount
does not necessarily result in performance increase as the costs of
wrong branch predictions and pipeline flushing become greater.

Our work focuses on low-cost IoT processors which present
significantly low area and power requirements as stated in [32], [33].
Under this premise we do not opt in deepening the pipeline width
or enhancing the complexity of the system, instead we focus on
increasing the processor throughput while preserving the system
microarchitecture as it is. In this section we will present how PDTA
can be employed for such a purpose.

4.2 Scaling clock by opcodes

PDTA can be used to acquire timing information for each instruction
separately and thus, we aim to use such information for adaptive
clock scaling based on the instruction opcode. In order to validate
our clock-scaling technique, we will continue using the same 64-bit
six-stage pipelined processor that we referred to in Section 3, which
is a single-issue in-order-execute RISC-V processor implementation.

We will refer to this implementation as “baseline processor”. In
order to tighten the timing of the processor’s functional units we
also deploy a second implementation that utilizes pipelined func-
tional units. As a result time consuming operations require more
clock cycle to complete but they display lower latency. We will
refer to this implementation as “pipelined execution”. We classify
the obtained results into 11 instruction classes as shown in Table 1.
Each instruction class contains a group of individual instructions
with similar timing requirements. We also pinpoint the slowest
pipeline stage in terms of delay, for every class and we refer to such
stage as “critical stage”. Finally, we assign a “worst-case delay”
value to each class, which is the highest instruction delay in the
corresponding group. The classes go as follows:

• The Logical instruction class which includes logical opera-
tions such as and, ori and xor.

• The Shift instruction class which includes shift operations
such as shift left logical or shift arithmetic.

• The Comparison instruction class which includes bit compar-
ison operations.

• The Jump instruction class which includes jump operations
such as jump and link, jump register or jump.

• The Multiplication instruction class which includes integer
multiplication operations.

• The Division instruction class which includes any integer
division operations.

• The Other arithmetic instruction class which includes all
other integer arithmetic operations except for multiplication
and division, such as addition or subtraction.

• The Memory access instruction class which includes any
memory access operation such as load word or store byte.

• The FP Multiplication instruction class which includes float-
ing point multiplication operations.

• The FP Division instruction class which includes floating
point division operations.

• The Other FP arithmetic instruction class which includes all
other floating point arithmetic operations except for FP multi-
plication and division, such as FP addition or subtraction.

Table 1: Analysis of the instruction classes of the RiscV Rocket core architecture.

Instruction class Slowest pipeline Baseline worst Pipelined execution
stage (critical stage) case delay worst case delay

Logical Execute stage 1.2 ns 1.2 ns
Shift Execute stage 1.5 ns 1.5 ns

Comparison Execute stage 1.5 ns 1.5 ns
Jump Execute stage 1.1 ns 1.1 ns

Multiplication Execute stage 2.9 ns 1.5 ns
Division Execute stage 3.3 ns 1.1 ns

Other arithmetic Execute stage 1.9 ns 1 ns
Memory access Memory stage 3.9 ns 1.3 ns

FP Division Execute stage 3.7 ns 1.3 ns
FP multiplication Execute stage 3.2 ns 1.1 ns

Other FP arithmetic Execute stage 3.0 ns 1 ns

www.astesj.com 767

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

After studying the aforementioned instruction classes we ob-
serve the following:

• Each pipeline stage presents unique timing requirements de-
pending on the instruction being executed.

• Some pipeline stages may produce error free results while
utilizing higher clock frequencies than the others.

• The error free instruction execution is preserved if we satisfy
the timing requirements of each individual pipeline stage for
the executing instruction.

We deduce that we can dynamically adapt the clock period of the
processor during the run time in order to achieve higher through-
put, while also guarantying the error free instruction execution. To
this end, we isolate the critical instructions, i.e. the instructions
that constrain the clock frequency and we display the results we
obtained for each implementation in Table 2. We track down all
critical instruction classes for our architecture and we assign a mini-
mum operational clock period to each one of them. Due to the prior
timing analysis, we are guaranteed that each critical instruction
will execute without errors at the designated clock period. We also
consider a typical clock period for each design which is suitable for
the error free execution of non-critical instructions.

Our design focuses on letting the pipeline operate at high clock
frequencies when critical instructions are absent. When a critical
instruction is detected, we downscale the clock frequency, as soon
as the critical instruction enters the pipeline stage which would
otherwise cause a timing error. We refer to such stage as critical
stage. Figure 3 shows an execution instance of a small instruction
sequence on the Rocket core Baseline implementation. We track
the minimum clock period with respect to the pipeline stages in-
volved and we mark the critical stages that contribute to frequency
downscaling. Under this premise, the critical stage is the slowest
pipeline stage in which the clock frequency needs to be adjusted so
that no timing errors to occur. In this example, the pipeline under
examination may operate at higher clock frequencies during the 1st
to 5th and 8th to 10th clock cycle, while the clock frequency must
be lower at the 6th and 7th cycle.

Figure 3: An instruction execution instance of the Rocket core implementation
displaying the minimum operational clock period during each stage.

Table 2: The clock periods for critical instructions along with the typical clock period
for the Rocket core implementation.

RiscV baseline RiscV pipelined execution
Multiplication, Division, Shift, Comparison,

Critical instruction class Memory access, FP division, Multiplication
FP multiplication

Critical instruction clock 4 ns 1.5ns
Typical clock 2 ns 1.3 ns

4.3 Dynamic clock scaling mechanism

We will now present in detail the circuit we designed to enforce
the adaptive selection of the clock frequency. The circuit uses the
information extracted from the timing analysis proposed in Section
3, to designate whether the clock frequency should be adapted. As
the decision making will be occurring in real time, our design needs
to employ reliability and speed. Figure 4 displays the designed clock
control unit, which is charged with such task, and is implemented
on the Rocket core implementation. It consists of an instruction
snooping module and a clock selection module. In order to make
the design nonintrusive for the processor architecture, we attach the
two-module circuit at the side of the fetch and the decode stages of
the processor pipeline.

Instruction snooping module: To be able to change the clock
frequency dynamically, we need information about the class of the
instructions that are headed for execution. To this end, we imple-
ment an instruction snooping circuit that receives a copy of the
instruction word coming out of the instruction cache. This circuit
monitors the instructions fetched and tracks down their progress in
the pipeline. Moreover, it utilizes lookup tables which contain both
the critical instruction opcodes and the critical pipeline stage for
each corresponding instruction as calculated in Section 4.2. Using
this information, the circuit produces a logical output on whether
the clock frequency must be changed, driving with that output the
clock selection module. Clock selection module: This module
propagates the appropriate clock pulse selected by the frequency
selector mechanism of the instruction snooping module. The clock
selection module inputs are the frequency selection signal generated
by the instruction snooping module and two PLL signals, one of
high and one of low frequency. The frequency selection signal de-
termines which pulse will be selected for the pipeline clock, when
the instruction arrives at the critical stage. If frequency is indeed
switched to low, the module must revert to the high frequency in the
following cycle. The selection circuit is a simple multiplexor with
insignificant contribution to the total delay of the module.

In the implementation of the second module, we observed that
reverting to the original frequency may result in an unstable pipeline
clock behavior, as shown in Figure 5. Such a phenomenon exists
due to the frequency difference between the clocks and may prove
catastrophic for the instruction execution. We address this problem
in the way shown in Figure 6, by generating another low frequency
pulse signal with a 180 degrees phase shift of the original. We also
design a phase selector circuit which is responsible for selecting the
appropriate phase when necessary. The phase selector is signaled
by the frequency selector when a frequency scaling event is about
to happen. It then designates the selected PLL phase so that no un-
stable behavior is exhibited. The complexity of the phase selection
mechanism depends on the number of PLLs required.

www.astesj.com 768

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

Figure 4: The clock control unit integrated in the rocket core.

Figure 5: Unstable clock behavior due to subsequent clock selections.

Figure 6: The clock instability compensation technique.

In the case of the implemented Baseline RiscV pipeline, where
one period is an integer multiple of the other (2ns and 4ns), the gen-
eration of one additional shifted PLL resolves the problem. In other
processor implementations though, additional PLLs may be needed,
each with a specific phase shift, in order to enable the phase selector
to compensate for all possible unstable behaviors of the pipeline
clock. We adopt this approach as we acknowledge the need for a
robust real time clock scaling mechanism. In contrast with [19] and
[20] which manage to change the clock frequency for up to 7.5% of
the core clock speed, we require much higher adaptation values. For
that reason we do not change the clock frequency directly, instead

we pre-generate the number of PLLs required and we proceed in
selecting the appropriate candidate each time.

In general, when we have two clocks with a period ratio m:n, m
and n being mutually primes, we need m PLLs for the phase shifts of
the first and n PLLs for the phase shifts of the second clock, giving
a total of m+n PLLs. Such a solution to the possible instability
problem serves as the most efficient in terms of performance. As
we saw earlier, clock frequencies used are the highest possible, with
longer clock periods just enough to cover the critical pipeline stage
delay. But this choice may result in a large number of PLLs. A
cheaper solution would be to always use a slow clock period that is
a multiple of the typical period. In this way we would not need that
many PLLs, sacrificing performance for simpler implementation. In
some cases, like the one examined above, it occurs that the optimal
performance solution coincides with the cheapest solution, but this
is definitely not the general case though.

4.4 Clock tree synthesis and distribution network

The proposed methodology requires the adoption of multiple PLLs
to formulate the processor core clock frequency. The processor
clock is dynamically selected according to the information obtained
by the clock control unit and any change should be enforced within
a very limited amount of time. Previous works in [21] and [15] have
shown that cycle-to-cycle clock selection is possible and thus, the
feasibility of the proposed methodology is ensured. To this end we
opt to synthesize a single clock tree that reaches every register of
the design, as we consider the propagation of all the available PLLs
very costly. Under this premise, we perform the clock tree synthesis
operation as if the design was operating under a single core clock
with a constant clock frequency. The resulting clock distribution
network is implemented by using timing constrains for the lower
possible period that is obtainable by the clock in our designs, i.e.
2 ns and 1.3 ns for the corresponding “baseline” and “pipelined
execution“ implementations.

The clock control logic is implemented in a global level; on the
clock tree root where the available PLLs are driven in order to select
the most appropriate to propagate through the constructed clock tree.

www.astesj.com 769

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

In this way we avoid the expensive area, routing and energy costs of
multiple PLL distribution, but we impose timing skew in the clock
tree network. Also local, cell level clock gating for heavily gated
clock networks such as ours results comes with various challenges,
as a previous works in [34] and [35] suggest, that are not within the
scope of this work.

In order to compensate for such a delay we design the clock
selection unit to generate the outputs that control the clock selection
process within the available timing margins. In this sense, we im-
plement a low complexity and low latency control circuit capable
of generating outputs with low delay, before the imminent clock
pulse. As a result each decision on the dynamic clock frequency
change is made within the timing margin available in order to prop-
erly distribute the clock pulse throughout the clock network in time.
Also, the clock tree synthesis process we employ does not require
the routing of all the PLLs of the design; instead it manages to prop-
agate the dynamically selected PLL through a single synthesized
clock tree.

5 Evaluation

In this section we discuss the evaluation process we employ in order
to evaluate the PDTA methodology. To this end, we elaborate on the
CAD toolflow and simulation environment we utilize and we present
the results we obtain in terms of speedup, power consumption and
overhead of the PDTA.

5.1 CAD toolflow and simulation

After rigorous consideration of many open-source simple processor
cores that have been used in architecture-oriented research in the last
decade, we have opted for the RiscV Rocket Core [36] processor
implemented in Verilog for evaluating our methodology. We have
implemented two processor versions as mentioned in Section 4, both
of which include our clock control design; we then compiled and
tested the circuits using a number of benchmarks, and produced a fi-
nal evaluation of our ideas. For the front-end design flow we used the
Synopsys Design Compiler [37] in conjunction with the NanGate
45nm Open Cell Library [38], whereas for the back-end place and
route process we used the Synopys IC Compiler [39]. Afterwards,
we used Synopsys PrimeTime [40] to apply the PDTA methodology
we described in Section 3 on the generated post-placement netlists.
We subsequently performed post-layout simulations, back annotat-
ing the design with Mentor Graphics Modelsim [41]. In order to
analyze the performance and power consumption of the system, we
selected the SPEC CPU2017 benchmark suite and we utilized the
RiscV toolchain to compile each benchmark to generate the required
binaries in accordance with the RiscV architecture. Finally, we em-
ployed Synopsys Power Compiler [42] to generate power reports for
each benchmark. The parameters of both the baseline processor and
the pipelined execution implementations are displayed in Figure 7.
The processor supports in-order instruction issue and execution with
64-bit instruction length. It also employs a BTB of 512 entries using
the g-share prediction mechanism. We have also incorporated an
L1 cache to the processor; in particular a 4-way associative 16KB
i-cache and a 4-way set associative 16KB

Figure 7: The configuration parameters of both processor implementations.

d-cache with LRU replacement policy. The access time of the
data cache is 4 and 7 clock cycles for the baseline and the pipelined
execution implementations correspondingly, while the access time
for the instruction cache is 1 clock cycle. The clock period for each
implementation is defined by the slowest pipeline stage as described
in section 4. Finally, the amount of PLLs required for the imple-
mentation of the PDTA methodology is 4 for the baseline and 18
for the pipelined execution RiscV implementations.

5.2 Speedup

We have run the Spec2017 CPU benchmarks on the baseline pro-
cessor implementation, on the pipelined execution implementation
and on their corresponding BTWC versions. We present the normal-
ized instruction throughput improvements we obtained according
to our experiments in Figure 8 where results indicate an average
performance increase in instruction throughput of 1.6 and 1.3 corre-
spondingly. In the same figure we also present the appearance rate
of critical instructions for each processor implementation. Further
result analysis discloses the following information:

Firstly, designs with relaxed timing constrains benefit more from
the PDTA methodology when compared with designs that display
tighter timing requirements. This behavior is expected as the PDTA
methodology exploits timing differences between individual proces-
sor operations. As a result, the more relaxed the system timing, the
higher performance increase is achieved. Secondly, frequent appear-
ance of critical instructions throttles the system’s performance as
the design is forced to operate under the worst-case clock period. As
a result benchmarks that display low critical instruction appearance
rates, also display higher throughput increase.

In order to further assess the effectiveness of PDTA methodology
we compare the obtained throughput results with other state of the
art timing speculation techniques. Tables 3 and 4 below demonstrate

www.astesj.com 770

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

Figure 8: Normalized throughput improvement and critical instruction appearance rate of the proposed design methodology compared to the corresponding baseline
processors.

the outcomes of such comparison. Table 3 depicts the normalized
throughput improvement of the application-adaptive guardbanding
technique proposed by A. Rahimi et. Al. in [10]. We compare
the PDTA methodology of both RiscV implementations with the
best and worst performance-wise design corners explored by [10].
The application-adaptive guardbanding technique outperforms our
methodology when it comes to the best-case design corners, but
PDTA proves to be more efferent in terms of performance in worst-
case design corners. Table 4 below displays the PDTA results in
conjunction with Blueshift optimization as described in [15]. In
this work the proposed TS methodology is applied on both Razor
[4] and OpenSPARC T1 processors displaying significant perfor-
mance improvements. According to table 4 PDTA design approach
achieves better throughput improvements if compared with Razor or
OpenSPARC T1 processor when the baseline RiscV is considered.
In contrast, the pipelined execution RiscV design is slightly behind
the Razor processor in terms of performance, while it still surpasses
the OpenSPARC T1 with the Blueshift design paradigm. PDTA
comparison with state of the art TS methodologies highlights the
competitive edge of our methodology as its performance is mea-
sured on average the same level if not above, compared to other TS
approaches.

Table 3: Throughput improvement comparison between Application-adaptive guard-
banding and PDTA.

Adaptive Guardbanding PDTA Baseline
Benchmark Best/Worst design /PDTA Pipelined

corner [10]
djikstra 1.87 / 1.36 1.61 / 1.28
patricia 1.89 / 1.38 1.8 / 1.26
susan 1.81 / 1.58 1.4 / 1.25

blowfish 1.84 / 1.35 1.6 / 1.25
Average 1.88 / 1.25 1.6 / 1.26

Table 4: Throughput improvement comparison between Blueshift OpenSPARC,
Razor and PDTA methodology.

Benchmark Blueshift OpenSPARC [15] Blueshift Razor [4] PDTA Baseline
/PDTA Pipelined

b2zip 1.18 1.37 1.8 / 1.28
gcc 1.25 1.39 1.42 / 1.29
mcf 1.04 1.05 1.7 / 1.25

Average 1.15 1.27 1.64 / 1.273

5.3 Power consumption compared to the baseline pro-
cessor

Due to clock frequency scaling, our design often tends to operate at
higher frequencies. As higher frequencies are more power hungry,
we expect a higher power usage compared to the baseline proces-
sor. To verify that assumption, we measure the power consumption
of the BTWC design and we compare it to its relevant baseline
processors in Figure 9. Results show that the power consumption
increase is higher for the benchmarks that present more opportu-
nities for aggressive frequency scaling. Specifically, an increase
of 4% to 36% in power consumption is observed, depending on
each benchmark’s capacity for frequency scaling. Nevertheless, by
dividing the performance improvement over the power increase for
each benchmark, we get an average of 3.7 improvement rate for
the performance-to-power ratio, which is a quite significant overall
improvement that we observe with our technique.

5.4 Overhead of the PDTA methodology

In order to properly evaluate the overhead of the PDTA method-
ology we measure both the PDTA design costs in terms of area
and power complexity and the PDTA analysis cost in terms of time
requirements.

Regarding the design costs of the PDTA, we quantify the over-
head in power and area of the post-layout implementation of the

www.astesj.com 771

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

Figure 9: Normalized power consumption increase of the proposed methodology compared to the baseline processors.

clock control circuit and instruction snooping modules. Such mod-
ules are the essential components of the PDTA design and are used
as described in section 4. Table 5 lists the power and area require-
ments of the aforementioned modules, along with the power and
area requirements of the baseline processors. We observe that the
power overhead of the control unit is less than 2% of the total av-
erage power consumption of the baseline pipelines, while the area
overhead almost 0.001%. Further, Table 6 depicts the area over-
head comparison between the state of the art methodologies and the
PDTA approach which is proposed in this work. We observe that
the PDTA methodology achieves the least area overhead compared
with the rest and thus, we conclude that the PDTA is well suited for
low-end, low power pipelined processors.

Regarding the time requirements of the PDTA, we measure the
amount of iterations and the amount of time required for the PDTA
analysis to complete. The results we obtain are depicted in Table 7
in comparison with the standard STA and DTA methodologies. We
define the iteration count as the amount of times the corresponding
timing methodology in invoked in order to sufficiently cover the
timing paths of the pipeline under examination. To this end, the
DTA methodology examines every possible bit-transition and thus,
it requires 2instruction length iterations (264 for the 64-bit RiscV Rocket
core implementations). On the other hand, the STA methodology
examines the worst case scenario only, for each instruction path and
thus, the required timing iterations are analogous to the complex-
ity of the design. The PDTA methodology resides in between the
DTA and STA approaches as the amount of the required iterations
is depended on the bit length of the opcode field of the ISA, as
discussed in section 3. As a result, the PDTA requires 27 iterations
in order to properly analyze the timing paths of the RiscV Rocket
core pipeline, as the opcode field of the rocket core ISA is 7 bits. In
order to evaluate the time requirements of each methodology, we
run the DTA, STA and PDTA approaches on the same RiscV rocket
core pipeline using an Intel i7 coffee lake processor with 6 cores
and 16 GB of DDR4 DRAM. Results indicate that the STA analysis

finishes in a 20 second period of time while the PDTA methodology
requires 5 minutes. In contrast, the DTA requires over 100 hours
to finish and thus, it is considered time costly for timing analysis in
processor pipelines. We conclude that the PDTA methodology man-
ages to efficiently manage the tradeoffs between STA and DTA as it
provides detailed timing reports for each ISA-supported instruction
while also requiring a reasonable time to finish.

Table 5: The power and area overhead of the clock control and instruction snooping
circuits in comparison to RiscV .

Implementation Average power Area
RiscV Baseline 65.67mW 0.24mm2

RiscV Pipelined execution 149.04mW 0.55mm2

Clock control and instruction snooping 98.21uW 321um2

Table 6: Area overhead comparison between PDTA methodology and the state of the
art.

Benchmark Area overhead
iRazor [5] 13.6%

Application-adaptive guardbanding [10] 0.022%
TS Cache [17] 1.8%

Active management [18] 0.12%
DynOR [21] 5 − 13%

Optimal In Situ Monitoring [26] 3.15%
Razor-Lite [43] 4.42%

Bubble Razor [44] 21%
PDTA (this work) 0.001%

www.astesj.com 772

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

Table 7: Time requirements of DTA, STA and PDTA to complete the timing analysis
of RiscV pipeline.

Implementation Iterations Iterations Time
Theoretical (RiscV) (RiscV)

DTA 2instruction length 264 Over 100 hours
STA Supported instructions 215 20 seconds

PDTA (this work) 2opcode length 27 5 minutes

5.5 PVT tolerance considerations

In order to evaluate our design we utilize a single design corner that
operates in 0°and 0.72 V. We select the aforementioned corner as
the 0.72 V is considered low power pipeline operation and thus, it
stays within the scope of this work. We also set a clock uncertainty
of 10% to compensate for the process variation effect which may in-
duce clock jitter and uncertainty to the integrated circuit. Evaluating
the proposed methodology with a full range of dynamic variations
as well as static process parameters variations is possible but the
PDTA analysis should be conducted independently for each individ-
ual design corner. A higher voltage than 0.72 volts would result in
shorter delay instruction paths, while lower operating temperatures
would lead to higher delays in the low-voltage region of 0.72 volts as
previous work in [45] demonstrates. To this end, the PDTA analysis
should be conducted for each design corner in order to extract the
exact timing information for the corresponding operating Voltage
and Temperature values. On the other hand, the process variation
effect can be emulated by setting clock jitter and clock delay values,
similarly to our approach. The methodology of the PDTA does
not require any modifications in order to function properly within
different PVT effects and thus, it can produce accurate timing results
given the exact operating condition of the integrated circuit.

6 Conclusion
The BTWC design paradigm promises to alleviate critical path con-
straints which have negative effects on processor timing. In this
paper we present PDTA, a timing analysis methodology, which
shifts the focus from a general critical path analysis to the less
constrained analysis of paths that are actually followed by individ-
ual instructions. To this end we design and implement a circuit
capable of identifying the timing requirements of any incoming
instruction and selecting the appropriate pipeline clock out of a
number of deployed PLLs. Thus we are able to scale up the clock
frequency beyond its worst-case operational limit. We evaluate our
methodology using a RiscV processor architecture which presents
differences in pipeline stage timing. Results demonstrate an average
performance increase of 1.62x, as well as a 3 to 4-fold improvement
in performance-to-power ratio, compared to the baseline processor.
The main contributions of this work to the current state of the art
include:

• We propose a novel methodology implemented on the circuit
level which considers instruction opcodes for performance
increase. Previous consideration of opcodes for performance
increase has been compiler-only consideration, i.e. instruc-
tions with expensive opcodes are identified at compile time
and avoided in code generation.

• The timing analysis we present is focused on individual in-
structions rather than on whole instruction sequences. In this
way we collect information that is more applicable in real
systems, as certain instruction sequences do not appear in a
steady and predictable rate.

• Our methodology identifies the timing requirements of indi-
vidual incoming instructions. Since we are a priori aware of
such constraints, we do not deploy any error detection or error
correction mechanism, while also avoiding any metastable
behavior which commonly manifests in such cases.

• We explore an architecture-oriented approach for the BTWC
design paradigm. Our work studies the processor architecture
to extract timing information based on the ISA of the proces-
sor. As a result, we consider this approach to have greater
applicability as it can be used on any processor architecture
without requiring any further adjustments.

• The proposed methodology does not make any intrusive
changes on the processor architecture. This means that it
can be applied without any additional design costs, and it
maintains the original pipeline intact.

Overall, the BTWC approach presents many opportunities for de-
signers to experiment with novel methodologies and innovative
techniques. We believe that research will produce various stud-
ies related to this field in the future, as it promises to redefine the
design paradigm of modern integrated circuits. Finally, given the
dominance of low-cost processors in embedded and many domain-
specific designs, ideas that boost performance of processors within
those fields in a simple and cheap way will appear, some of which
successfully establishing new directions in microprocessor design.

Conflict of Interest The authors declare no conflict of interest.

References
[1] A. Tziouvaras, G. Dimitriou, M. Dossis, G. Stamoulis, “Adaptive Operation-

Based ALU and FPU Clocking,” in 2020 9th International Conference on
Modern Circuits and Systems Technologies (MOCAST), 1–4, 2020, doi:
10.1109/MOCAST49295.2020.9200282.

[2] T. Austin, V. Bertacco, “Deployment of better than worst-case design: solutions
and needs,” in 2005 International Conference on Computer Design, 550–555,
2005, doi:10.1109/ICCD.2005.43.

[3] R. Ye, F. Yuan, J. Zhang, Q. Xu, “On the premises and prospects of timing spec-
ulation,” in 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), 605–608, 2015, doi:10.5555/2755753.2755890.

[4] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, T. Mudge, “Razor: a low-power pipeline
based on circuit-level timing speculation,” in Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.,
7–18, 2003, doi:10.1109/MICRO.2003.1253179.

[5] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. Pinckney, M. Alioto,
D. Blaauw, D. Sylvester, “iRazor: Current-Based Error Detection and Correc-
tion Scheme for PVT Variation in 40-nm ARM Cortex-R4 Processor,” IEEE
Journal of Solid-State Circuits, 53(2), 619–631, 2018, doi:10.1109/JSSC.2017.
2749423.

www.astesj.com 773

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

[6] V. Subramanian, M. Bezdek, N. D. Avirneni, A. Somani, “Superscalar Proces-
sor Performance Enhancement through Reliable Dynamic Clock Frequency
Tuning,” in 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), 196–205, 2007, doi:10.1109/DSN.2007.90.

[7] T. Austin, V. Bertacco, D. Blaauw, T. Mudge, “Opportunities and challenges
for better than worst-case design,” in Proceedings of the ASP-DAC 2005. Asia
and South Pacific Design Automation Conference, 2005., I/2–I/7 Vol. 1, 2005,
doi:10.1109/ASPDAC.2005.1466113.

[8] C. C. Wang, K. Y. Chao, S. Sampath, P. Suresh, “Anti-PVT-Variation Low-
Power Time-to-Digital Converter Design Using 90-nm CMOS Process,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 28(9), 2069–
2073, 2020, doi:10.1109/TVLSI.2020.3008424.

[9] B. Poudel, A. Munir, “Design and Evaluation of a PVT Variation-Resistant
TRNG Circuit,” in 2018 IEEE 36th International Conference on Computer
Design (ICCD), 514–521, 2018, doi:10.1109/ICCD.2018.00083.

[10] A. Rahimi, L. Benini, R. K. Gupta, “Application-Adaptive Guardbanding to
Mitigate Static and Dynamic Variability,” IEEE Transactions on Computers,
63(9), 2160–2173, 2014, doi:10.1109/TC.2013.72.

[11] T. Abhishek, S. Smruti R., T. Josep, “ReCycle: Pipeline Adaptation to Tolerate
Process Variation,” in Proceedings of the 34th Annual International Symposium
on Computer Architecture, ISCA ’07, 323–334, Association for Computing
Machinery, New York, NY, USA, 2007, doi:10.1145/1250662.1250703.

[12] S. Sarangi, B. Greskamp, A. Tiwari, J. Torrellas, “EVAL: Utilizing processors
with variation-induced timing errors,” in 2008 41st IEEE/ACM International
Symposium on Microarchitecture, 423–434, 2008, doi:10.1109/MICRO.2008.
4771810.

[13] K. A. Bowman, J. W. Tschanz, S. L. Lu, P. A. Aseron, M. M. Khellah, A. Ray-
chowdhury, B. M. Geuskens, C. Tokunaga, C. B. Wilkerson, T. Karnik, V. K.
De, “A 45 nm Resilient Microprocessor Core for Dynamic Variation Tol-
erance,” IEEE Journal of Solid-State Circuits, 46(1), 194–208, 2011, doi:
10.1109/JSSC.2010.2089657.

[14] A. Omid, M. Aqeel, L. Benjamin C., P. Sanjay J., H. Mark, “Energy-
Performance Tradeoffs in Processor Architecture and Circuit Design: A
Marginal Cost Analysis,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, 26–36, Association for Com-
puting Machinery, New York, NY, USA, 2010, doi:10.1145/1815961.1815967.

[15] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen,
C. Zilles, “Blueshift: Designing processors for timing speculation from the
ground up.” in 2009 IEEE 15th International Symposium on High Performance
Computer Architecture, 213–224, 2009, doi:10.1109/HPCA.2009.4798256.

[16] A. B. Kahng, S. Kang, R. Kumar, J. Sartori, “Designing a processor from the
ground up to allow voltage/reliability tradeoffs,” in HPCA - 16 2010 The Six-
teenth International Symposium on High-Performance Computer Architecture,
1–11, 2010, doi:10.1109/HPCA.2010.5416652.

[17] S. Shen, T. Shao, X. Shang, Y. Guo, M. Ling, J. Yang, L. Shi, “TS Cache: A
Fast Cache With Timing-Speculation Mechanism Under Low Supply Voltages,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1),
252–262, 2020, doi:10.1109/TVLSI.2019.2935227.

[18] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock, J. A.
Tierno, J. B. Carter, “Active management of timing guardband to save energy
in POWER7,” in 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 1–11, 2011, doi:10.1145/2155620.2155622.

[19] T. Hashimoto, Y. Kawabe, M. Kara, Y. Kakimura, K. Tajiri, S. Shirota,
R. Nishiyama, H. Sakurai, H. Okano, Y. Tomita, S. Satoh, H. Yamashita,
“An adaptive clocking control circuit with 7.5% frequency gain for SPARC
processors,” in 2017 Symposium on VLSI Technology, C112–C113, 2017,
doi:10.23919/VLSIT.2017.7998133.

[20] A. Grenat, S. Pant, R. Rachala, S. Naffziger, “5.6 Adaptive clocking system
for improved power efficiency in a 28nm x86-64 microprocessor,” in 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 106–107, 2014, doi:10.1109/ISSCC.2014.6757358.

[21] J. Constantin, A. Bonetti, A. Teman, C. Müller, L. Schmid, A. Burg, “DynOR:
A 32-bit microprocessor in 28 nm FD-SOI with cycle-by-cycle dynamic clock
adjustment,” in ESSCIRC Conference 2016: 42nd European Solid-State Cir-
cuits Conference, 261–264, 2016, doi:10.1109/ESSCIRC.2016.7598292.

[22] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, L. Lavagno, “Metasta-
bility in Better-Than-Worst-Case Designs,” in 2014 20th IEEE International
Symposium on Asynchronous Circuits and Systems, 101–102, 2014, doi:
10.1109/ASYNC.2014.21.

[23] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. L. Lu,
T. Karnik, V. K. De, “Energy-Efficient and Metastability-Immune Resilient Cir-
cuits for Dynamic Variation Tolerance,” IEEE Journal of Solid-State Circuits,
44(1), 49–63, 2009, doi:10.1109/JSSC.2008.2007148.

[24] X. Wang, W. H. Robinson, “Error Estimation and Error Reduction With Input-
Vector Profiling for Timing Speculation in Digital Circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 38(2), 385–389,
2019, doi:10.1109/TCAD.2018.2808240.

[25] Z. Li, T. Zhu, Z. Chen, J. Meng, X. Xiang, X. Yan, “Eliminating Timing Errors
Through Collaborative Design to Maximize the Throughput,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 25(2), 670–682, 2017,
doi:10.1109/TVLSI.2016.2587810.

[26] H. Ahmadi Balef, H. Fatemi, K. Goossens, J. Pineda De Gyvez, “Timing
Speculation With Optimal In Situ Monitoring Placement and Within-Cycle
Error Prevention,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(5), 1206–1217, 2019, doi:10.1109/TVLSI.2019.2895972.

[27] E. Tune, Dongning Liang, D. M. Tullsen, B. Calder, “Dynamic prediction
of critical path instructions,” in Proceedings HPCA Seventh International
Symposium on High-Performance Computer Architecture, 185–195, 2001,
doi:10.1109/HPCA.2001.903262.

[28] J. Xin, R. Joseph, “Identifying and predicting timing-critical instructions
to boost timing speculation,” in 2011 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 128–139, 2011, doi:
10.1145/2155620.2155636.

[29] M. de Kruijf, S. Nomura, K. Sankaralingam, “A unified model for tim-
ing speculation: Evaluating the impact of technology scaling, CMOS de-
sign style, and fault recovery mechanism,” in 2010 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN), 487–496, 2010, doi:
10.1109/DSN.2010.5544278.

[30] H. Y. Cheah, S. A. Fahmy, N. Kapre, “Analysis and optimization of a deeply
pipelined FPGA soft processor,” in 2014 International Conference on Field-
Programmable Technology (FPT), 235–238, 2014, doi:10.1109/FPT.2014.
7082783.

[31] A. Hartstein, T. R. Puzak, “The optimum pipeline depth for a microprocessor,”
in Proceedings 29th Annual International Symposium on Computer Architec-
ture, 7–13, 2002, doi:10.1109/ISCA.2002.1003557.

[32] V. Agarwal, R. A. Patil, A. B. Patki, “Architectural Considerations for Next
Generation IoT Processors,” IEEE Systems Journal, 13(3), 2906–2917, 2019,
doi:10.1109/JSYST.2018.2890571.

[33] B. M. Tariq, “A Study of Current Trends in the Design of Processors for the In-
ternet of Things,” in Proceedings of the 2nd International Conference on Future
Networks and Distributed Systems, ICFNDS ’18, Association for Computing
Machinery, New York, NY, USA, 2018, doi:10.1145/3231053.3231074.

[34] L. Weicheng, S. Emre, S. Can, T. Baris, “Clock Skew Scheduling in the
Presence of Heavily Gated Clock Networks,” in Proceedings of the 25th
Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, 283–288,
Association for Computing Machinery, New York, NY, USA, 2015, doi:
10.1145/2742060.2742092.

[35] C. Chang, S. Huang, Y. Ho, J. Lin, H. Wang, Y. Lu, “Type-matching clock
tree for zero skew clock gating,” in 2008 45th ACM/IEEE Design Automation
Conference, 714–719, 2008, doi:10.1145/1391469.1391653.

www.astesj.com 774

http://www.astesj.com


A. Tziouvaras et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 763-775 (2021)

[36] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, P. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou,
D. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, A. Waterman, “The
Rocket Chip Generator,” Technical report, EECS Department, University of
California, Berkeley, April 2016.

[37] “Synopsys Design Compiler,” https://www.synopsys.com/

implementation-and-signoff/rtl-synthesis-test/

design-compiler-graphical.html.

[38] C. H. M. Oliveira, M. T. Moreira, R. A. Guazzelli, N. L. V. Calazans, “ASCEnD-
FreePDK45: An open source standard cell library for asynchronous design,”
in 2016 IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 652–655, 2016, doi:10.1109/ICECS.2016.7841286.

[39] “Synopsys IC Compiler,” https://www.synopsys.com/

implementation-and-signoff/physical-implementation/

ic-compiler.html.

[40] “Synopsys PrimeTime,” https://www.synopsys.com/

implementation-and-signoff/signoff/primetime.html.

[41] “Mentor Graphics Modelsim,” https://www.mentor.com/products/fv/
modelsim/.

[42] “Synopsys Power Compiler,” https://www.synopsys.com/

implementation-and-signoff/rtl-synthesis-test/

power-compiler.html.

[43] I. Kwon, S. Kim, D. Fick, M. Kim, Y. Chen, D. Sylvester, “Razor-Lite:
A Light-Weight Register for Error Detection by Observing Virtual Supply
Rails,” IEEE Journal of Solid-State Circuits, 49(9), 2054–2066, 2014, doi:
10.1109/JSSC.2014.2328658.

[44] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, D. Sylvester,
“Bubble Razor: An architecture-independent approach to timing-error detection
and correction,” in 2012 IEEE International Solid-State Circuits Conference,
488–490, 2012, doi:10.1109/ISSCC.2012.6177103.

[45] R. Kumar, V. Kursun, “Reversed Temperature-Dependent Propagation De-
lay Characteristics in Nanometer CMOS Circuits,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 53(10), 1078–1082, 2006, doi:
10.1109/TCSII.2006.882218.

www.astesj.com 775

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/power-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/power-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/power-compiler.html
http://www.astesj.com

	Introduction
	Previous research
	Timing Analysis in Processor Datapaths
	Static and Dynamic Timing Analysis 
	The Pseudo Dynamic Timing Analysis Concept
	Dynamic Opcode Value Changes 

	Clock scaling using opcode-based pseudo dynamic timing analysis
	Adaptive clock scaling in pipelined processors
	Scaling clock by opcodes
	Dynamic clock scaling mechanism
	Clock tree synthesis and distribution network

	Evaluation
	CAD toolflow and simulation
	Speedup
	Power consumption compared to the baseline processor
	Overhead of the PDTA methodology
	PVT tolerance considerations

	Conclusion

