Discretisation of Second Order Generalized Integrator to Design the Control Algorithm of Unified Power Quality Conditioner

Mashhood Hasan*1, Bhim Singh1, Waleed Hassan Alhazmi2, Sachin Devassy3

1Department of Electrical Engineering, Indian Institute of Technology (IIT Delhi), New Delhi, 110016, India
2Department of Mechanical Engineering, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
3CSIR-Central Electronics Engineering Research Institute, Power Electronics Group, Pilani, Rajasthan, 333031, India

ARTICLE INFO

Article history:
Received: 23 December, 2020
Accepted: 08 March, 2021
Online: 31 March, 2021

Keywords:
AC mains
Discretization
Feedback unit
Power Quality
Voltage source converter
UPQC

ABSTRACT

In this paper, second order generalized integrator (SOGI) is discretized to design the control algorithm of unified power quality conditioner (UPQC). A UPQC is combination of two voltage source converter (VSC) and VSC are connected with back to back DC link. The first one VSC is in series to maintain the desired voltage at point of common coupling (PCC) and second is connected with shunt VSC to share the reactive power demand of load. Moreover, it protects the AC mains from pollution of the load. A phase lock loop (PLL) based SOGI model is implemented to design an algorithm for UPQC under light polluted load. Whereas under highly polluted load the Laplace Transformation based PLL-SOGI model is fail to eliminate harmonics of current and voltage at PCC. Thus, a discretization of PLL-SOGI is needed to meet disadvantage. In this paper, reference current is generated under polluted load using discretization of PLL-SOGI model and compared it with actual current to pulse the gate of shunt VSC. Moreover, a feedback unit (m) is proposed to pulse the gate of series VSC under voltage sag/swell condition. A hardware setup is performed in the lab to verify the proposed algorithm under highly polluted load.

1. Introduction

This paper is an extension of original work, existing in 2020 IEEE 9th Power India International Conference (PIICON) [1]. In this paper, recent demand of electrical energy consumers and services are satisfied with international standard like Institute of Electrical and Electronics Engineers (IEEE) and International Electrotechnical Commission (IEC). It is done by using custom power devices (CPDs). The various kinds of CPDs are available in the present market while authors have chosen Unified Power Quality Conditioner (UPQC). This is unified controller to suppress the burden like current harmonics at source side and voltage harmonics at point of common coupling (PCC) of electrical distribution system [2]. Moreover, it suppresses the voltage related problems like voltage sag and swell at PCC [3]. A UPQC consist two voltage source converters (VSCs), associated back to back DC link. One VSC is connected in series whereas second one is coupled in parallel to the load [4, 5]. The VSC is nothing without control algorithms which generates pulse. Thus, shunt and series part of VSCs require good control algorithms to improve the multiple power quality of the 3-phase AC primary distribution system [6-8]. The second order generalized integrator (SOGI) is the simple control approach which gives the information like time, magnitude and phase angle of the signals [9]. The SOGI have phase lock loop (PLL) combination and frequency locked loop (FLL) combination [10, 11]. The PLL based configuration of SOGI is discretization in the proposed work. The literature survey indicates many resemble works are reported in grid synchronization using SOGI [12, 13] to extract harmonics. In [14], SOGI based control approach to reduces sensors whereas power quality enhancement is reported in [15, 16]. A SOGI-PLL is presented in [17] to extract active and reactive power. A PLL based second and third order mixed generalized integrated is implemented in grid connected inverter [18]. As the order of equation is increased the further calculation require which again burden for programming to design a controller. Generally, PLL-SOGI and other modified SOGI are applicable to synchronize the voltages/currents signals [19, 20]. The phase of two periodic waves are minimized by PLL. Thus, two phases are synchronized exactly.
in the proposed algorithms whereas back to back DC level voltage is increased to proper synchronization of two phases. The proposed configuration of SOGI is able to create two output signals. These output signals provide active and reactive components in the direct axis (α-axis) and quadrature axis (β-axis) respectively. Under polluted loads the point of common coupling (PCC) and AC mains get effected which produces harmonics. Thus, input currents/voltages signals of PLL-SOGI contains harmonics while output active components is passed through bandpass filter which reduces the harmonics components of current ($i_α$) and voltage ($v_α$) at certain level. Moreover, reactive component is passed through low pass filter at 90° degree of input signal. It gives reactive component ($β$) of current ($i_β$) and voltage ($v_β$). These voltages and currents signals are helpful to calculate real time active power ($p_1(t)$) and reactive power ($q_1(t)$). While, researchers have found many ways to calculate real time $p_1(t)$ and $q_1(t)$ power [21-23]. Moreover, way of extraction of instantaneous power search accuracy of active and reactive component. Thus, in this work, PLL-SOGI is discretized using trapezoidal method. The trapezoidal methods measures accurate 90° degree lagging with respect to input signal under heavy polluted loads [24]. It helps to measure accurate instantaneous power of $p_1(t)$ and $q_1(t)$. The authors have following contributions in the present work which are given as follows,

- PLL-SOGI is discretized to design the control algorithm of UPQC which pulses the shunt part of VSC and series part of the VSC
- The reference signals of the AC mains currents are generated using simple mathematical calculation.
- A feedback unit ‘m’ is proposed to mitigate the voltage sag and swell at PCC.

Furthermore, in section 2, a brief information of model configuration is presented whereas section 3, control algorithm of UPQC is given. Results and discussion are shown in section 4 and in the last section 5 conclusion is presented.

2. Model Configuration

In Figure 1, a model arrangement of 3-phase, AC mains is connected with UPQC to mitigate the voltage sag, swell, reactive power and eliminate harmonics. The series part VSC of the UPQC is connected left from the PCC whereas shunt part VSC of UPQC connected at PCC. The back to back DC link voltage is maintained 180V for proper and fast working of the proposed algorithms. The DC link capacitor value is estimated nearly 3.3 mF. The AC mains supplies line voltage 110V at 50Hz to polluted load current with 20% THD and its apparent power is 819VA. The switching harmonics of series and shunt VSC are eliminated by R-C filters. The value of R and C are 10Ω and 10μF respectively. The series VSC is interfaced by series transformer whereas shunt VSC is interfaced by inductors value 8 mH. The control algorithm of series and shunt part are separately developed. In the control algorithm block, authors have contributed to develop an idea of algorithm for series VSC and shunt VSC.

3. Control Algorithms of UPQC

Two mathematical model descriptions are presented to design a control algorithm of UPQC. A UPQC has two VSC, thus it requires two separate algorithms.
The equation (2) and (3) are used to extract the discrete value of active part of voltage (v_α) and reactive part of voltage (v_β). These discrete values are helpful to get real time active power ($p_L(t)$) and reactive power ($q_L(t)$). The $p_L(t)$ and $q_L(t)$ are estimated as follows,

$$\begin{bmatrix} P_{La} \\
Q_{La} \end{bmatrix} = \begin{bmatrix} v_{La,\alpha} & v_{La,\beta} \\
-v_{La,\beta} & v_{La,\alpha} \end{bmatrix} \begin{bmatrix} i_{La,\alpha} \\
-i_{La,\beta} \end{bmatrix}$$ (4)

where p_{La} and q_{La} are real time active and reactive powers of phase ‘a’. While, $i_{La,\alpha}$ and $i_{La,\beta}$ are a reactive part of input AC current. The AC mains is designed for active power only thus, reactive part in equation (4) is taken as zero. Next stage, AC mains is delivered balanced power which is given as follows

$$p^*_s = \frac{p_{total}}{3} = \frac{(p_{La} + p_{Lb} + p_{Lc})}{3}$$ (5)

The equation (5) gives load demand of active power per phase. The reference of actual active and reactive part of reference current can find as

$$\begin{bmatrix} i_{sa,\alpha}^* \\
i_{sa,\beta}^* \end{bmatrix} = \begin{bmatrix} v_{La,\alpha} & v_{La,\beta} \\
-v_{La,\beta} & v_{La,\alpha} \end{bmatrix}^{-1} \begin{bmatrix} p_s^* \\
0 \end{bmatrix}$$ (6)

The losses in equation (6) is controlled by the DC link power (P_{DC}), which is calculated as,

$$\begin{bmatrix} i_{sa,\alpha}^* \\
i_{sa,\beta}^* \end{bmatrix} = \begin{bmatrix} v_{La,\alpha} & v_{La,\beta} \\
-v_{La,\beta} & v_{La,\alpha} \end{bmatrix}^{-1} \begin{bmatrix} p_s^* + P_{DC} \\
0 \end{bmatrix}$$ (7)

The DC link of UPQC is controlled by a simple Proportional Integral (PI) controller. The input of PI is an error signal ($\varepsilon(n)$) of DC link voltage. And $\varepsilon(n)$ can be extracted by the difference of the reference voltage (v_{DC}^*) and actual sensed voltage ($v_{DC}(n)$). The power loss at nth sampling time is estimated using equation (8).

$$P_{DC}(n) = P_{DC}(n-1) + k_p \varepsilon(n) - \varepsilon(n-1) + k_i \varepsilon(n)$$ (8)

where k_p and k_i are gain constants of PI controller. While $\varepsilon(n)$ and $\varepsilon(n-1)$ sampling time.

Finally, using equation (7) reference currents (i_{sa}^*, i_{sb}^*, i_{sc}^*) can be evaluated as follows,

$$\begin{align*}
i_{sa}^* &= \frac{v_{La,\alpha}(n)}{v_{La,\alpha}^2 + v_{La,\beta}^2} \{ p_s^* + P_{DC} \} \\
i_{sb}^* &= \frac{v_{Lb,\alpha}(n)}{v_{Lb,\alpha}^2 + v_{Lb,\beta}^2} \{ p_s^* + P_{DC} \} \\
i_{sc}^* &= \frac{v_{Lc,\alpha}(n)}{v_{Lc,\alpha}^2 + v_{Lc,\beta}^2} \{ p_s^* + P_{DC} \}
\end{align*}$$ (9)

However, the pulses of shunt VSC are generated by comparing the equation (9) signals and the signals of 3-phase AC mains currents (i_{sa}, i_{sb}, i_{sc}).

Figure 2: (a) Modified control Algorithm for shunt VSC

Figure 2: (b) Control Algorithm for series VSC

3.2. Design an Algorithm for series VSC

In Figure 2b, a feedback unit ‘m’ is played a role to design an algorithm of series VSC. Where m gives the proper feedback voltage under sag/swell condition of AC mains voltage. It maintains the desire PCC voltage. The actual PCC voltages are

www.astesj.com
extracted by a simple calculation which is square root sum of direct axis voltage \(v_{a,\alpha}\) and quadrature axis voltage \(v_{a,\beta}\). These values are further multiplying by 0.5 to get root mean square (rms) value. Moreover, a reference load voltage \((VL^*)\) is divided by the actual rms load voltage to obtain the \(m\). Mathematically, \(m\) can be obtained as,

\[
m = \frac{V_L^*}{V_{a,\text{rms}}} = \frac{V_L^*}{0.5 \sqrt{v_{a,\alpha}^2 + v_{a,\beta}^2}} = \frac{V_L^*}{V_{a,\alpha}}
\]

(10)

Thus, under normal condition \(m\) predict a value equal to one to get desire voltage at PCC. This controller is an adaptive in nature. Similarly, \(m\) can predict a different correct value under abnormal condition of the AC mains. It is given as follows.

3.2.1 Voltage Sag Condition

In this case, assume, AC mains voltage of phase ‘a’ is running with voltage sag by factor \(x\). Consequently, at PCC the voltage is reduced by factor \(x\). The feedback unit is predicted \(m_1\) under voltage sag and it is calculated as follows,

\[
m_1 = \frac{V_{c}^*}{x \times V_{a,\text{rms}}} = \frac{V_{c}^*}{x \times 0.5 \sqrt{v_{a,\alpha}^2 + v_{a,\beta}^2}} = \frac{V_{c}^*}{x \times V_{a,\alpha}} = \frac{m}{x}
\]

(11)

If factor \(x\) become one, the \(m_1\) is equal to \(m\), hence it is proved by equation (11) that the proposed control algorithm is an adaptive in nature under voltage sag condition. Moreover, the generated reference voltage \((v_{La}^*)\) is equal to multiple of direct axis voltage \((v_{La,\alpha})\) and feedback unit \((m_1 \times x)\) under voltage sag condition. Now, \(v_{La}^*\) can find as,

\[
v_{La}^* = m_1 \times x \times v_{La,\alpha} = m \times v_{La,\alpha}
\]

(12)

3.2.2 Under Voltage Swell

In this case, assume, AC mains voltage of phase ‘a’ is running with voltage swell by factor \(y\). Consequently, at PCC the voltage is reduced by factor \(y\). The feedback unit is predicted \(m_2\) under voltage swell and it is calculated as follows,

\[
m_2 = \frac{V_{c}^*}{y \times V_{a,\text{rms}}} = \frac{V_{c}^*}{y \times 0.5 \sqrt{v_{a,\alpha}^2 + v_{a,\beta}^2}} = \frac{V_{c}^*}{y \times V_{a,\alpha}} = \frac{m}{y}
\]

(13)

If factor \(y\) become one, the \(m_2\) is equal to \(m\), hence it is proved by equation (13) that the proposed control algorithm is an adaptive in nature under voltage swell condition. Moreover, the generated reference voltage \((v_{La}^*)\) is equal to multiple of direct axis voltage \((v_{La,\alpha})\) and feedback unit \((m_2 \times y)\) under voltage swell condition. Now, \(v_{La}^*\) can find as,

\[
v_{La}^* = m_2 \times y \times v_{La,\alpha} = m \times v_{La,\alpha}
\]

(14)

In the same way, the above equation can extract for phase ‘b’ and phase ‘c’ of primary AC distribution system. The proposed control algorithm can work under abnormal condition of AC mains and it is good to opt for the UPQC.

4. Experimental Results

A 3-phase, 3-wire AC system is integrated with UPQC in the lab which is shown in Figure 3. It consists D-Space software to link with hardware and PC for evaluation the performance of the modified algorithm under polluted loads. In Table 1, model parameters are given. Whereas in Table 2 shows the THD and power factor under various load conditions. The hardware results are shown in Figures 5 and Figures 6&7 under steady state conditions and under dynamic condition respectively. Moreover, a comparative Matlab result is shown in Figure 4 to understand the value of modified algorithm.

![Figure 3](image-url)
Figure 3: A lab model of 3-phase 3-wire AC system integrated with UPQC

![Figure 4](image-url)
Figure 4: A comparative results under quasi square wave demand of load current, (a) polluted load current waveform \((i_L(A))\), (b) AC mains current waveform under SOGI \((i_c(A))\) and AC mains current under modified SOGI \((i_{c,d}(A))\).
<table>
<thead>
<tr>
<th>Quantities</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC line voltage</td>
<td>110V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz</td>
</tr>
<tr>
<td>Load current THD</td>
<td>20%</td>
</tr>
<tr>
<td>DC-bus Voltage</td>
<td>180V</td>
</tr>
<tr>
<td>DC-bus Capacitor</td>
<td>3.3 mF</td>
</tr>
<tr>
<td>Shunt converter Interfacing Inductors</td>
<td>8 mH</td>
</tr>
<tr>
<td>Ripple Filter</td>
<td>10 μF, 10 Ω</td>
</tr>
<tr>
<td>Series Converter Interfacing Inductor</td>
<td>1.5 mH</td>
</tr>
<tr>
<td>DC-bus PI Gains</td>
<td>Kp = 4, Ki = 1</td>
</tr>
<tr>
<td>Gain constant</td>
<td>K=1</td>
</tr>
<tr>
<td>a0</td>
<td>1.5698*10-4</td>
</tr>
<tr>
<td>a1</td>
<td>1.99984</td>
</tr>
<tr>
<td>a2</td>
<td>-0.999764</td>
</tr>
</tbody>
</table>

4.1. Performance Under Normal Condition

The power analyzer 3-phase 4 channel is used to show the results of modified algorithm. The line to line voltage V_{ab} and 3-phase AC mains current are indicated as i_{ab}, i_{b}, and i_{c} respectively. It is shown in Figure 5(a) whereas in Figure 5(b), the line to line load voltage V_{lab} and single phase load current are indicated as i_{La}, i_{Lb}, and i_{Lc}. It is observed from the results that source AC mains are free from harmonics while load is under heavy polluted thus, shunt algorithm works properly. Whereas, series algorithm maintain desired voltage at PCC properly under steady state condition.

4.2. Performance Shunt VSC Under Dynamic Condition

In Figure 6(a), performance of modified control algorithm for shunt VSC is presented under dynamic load condition. In this case, phase ‘c’ of load is abruptly off. Thus, load current i_{Lc} is zero and at the same time shunt VSC become active and inject shunt current i_{shc} in phase ‘c’ to stable the AC mains source current i_{sc}. Whereas, in Figure 6(b), when load demands current in phase ‘c’ active, the shunt VSC injects harmonics to make supply pure sinusoidal AC mains current. It is seen that the modified control algorithm works properly to maintain AC mains source as an international standard and balanced. Moreover, the DC link voltage (V_{DC}) is unchanged under dynamics condition of load.

Figure 5: The AC mains voltage, currents, load voltage and load currents under normal condition.

Figure 6: Current waveform of AC main current, shunt current and load current under dynamic condition.
4.3. Performance Series VSC Under Dynamic Condition

The performance of series VSC is shown in Figures 7(a)-(b) and Figures 7(c)-(d) under voltage sag and swell conditions. In Figure 7(a), AC mains line to line voltage v_{sab} is running under voltage sag while at PCC line to line voltage v_{Lab} is regulated to maintain the desire voltage of the load. The series voltage v_{sab} is added in series with the AC mains to regulate load voltage at 110V using series VSC.

In Figure 7(b), AC mains 3-phase voltages are regulated by series VSC. The line to line voltage v_{sab} and v_{sbc} are running under voltage sag condition whereas line to line load voltage v_{Lab} and v_{Lbc} are regulated at desire voltage 110V. Thus, the waveform of three phase voltage shows that the performance of feedback unit 'm' works satisfactory and series VSC works at desire level to mitigate voltage sag.

Moreover, the feedback factor 'm' is tested under voltage swell condition. In this case, series VSC injects voltage in feeder of AC mains to opposite phase of AC mains voltage. It suppresses the AC mains voltage and consequently load voltage is maintain at desire level 110V. In Figure 7(c), AC mains v_{sab} is running under voltage swell while at PCC v_{Lab} is regulated to maintain the desire voltage of the load. The series voltage v_{sab} is subtract in series with the AC mains to regulate load voltage at 110V using series VSC. While, AC mains current i_{sa} reduces under voltage swell condition to balance the power of the AC mains.

5. Conclusion

The discrete value of second order generalized integrator (SOGI) has realized to design control approach of UPQC which performance have been verified under heavy polluted load and under various conditions of load. Under normal condition, series VSC is inactive while shunt VSC eliminate the harmonics of the load and injects reactive power demand to the 3-phase load. And under dynamic condition, the shunt VSC shows the excellent performance whereas the series VSC works under voltage sag and swell conditions. The voltage sag from 110V to 99V while voltage swell from 110V to 121V are generated at AC mains while at load side (PCC) the voltage is regulated at 110V. The performance of proposed feedback unit 'm' for series part of UPQC has unique to suppress the sag and swell voltage of PCC and modified algorithm of shunt part of UPQC eliminates the harmonics of load and enhance the performance of AC mains. Thus, it has been seen that proposed algorithm of UPQC improve the multiple power quality of the 3-phase primary distribution feeder line of power system.
Table 2: THD and Power Factor Under Various Load Conditions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Nominal</th>
<th>Sag</th>
<th>Swell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Current THD</td>
<td>20%</td>
<td>20.14%</td>
<td>19.80%</td>
</tr>
<tr>
<td>PCC Current THD</td>
<td>3.77%</td>
<td>2.88%</td>
<td>4.65%</td>
</tr>
<tr>
<td>Load Voltage THD</td>
<td>3.58</td>
<td>3.50%</td>
<td>3.55%</td>
</tr>
<tr>
<td>PCC Voltage THD</td>
<td>1.92</td>
<td>1.96%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Power factor at grid</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

References

www.istesj.com