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The main contribution of this paper is the framework of Application Programming Interface
(API) to be integrated on a smartphone app. The integration with algorithm that generates
fingerprints from the method ST-PSD with several parameter configurations (Windows size,
threshold, and sub-score linear combination coefficient). An approach capable of recognizing an
audio piece of music with an accuracy equal to 90% was further tested based on this result. In
addition the implementation is done by algorithm using Java’s programming language, executed
through an application developed in the Android operating system. Also, capturing the audio
from the smartphone, which is subsequently compared with fingerprints, those present in a
database.

1 Introduction

An audio representation includes a recording of a musical piece’s
output. Digital sound recordings are based on the analog audio
signal being sampled. Sampling is achieved by capturing the signal
amplitude at a specified sampling rate and storing them in binary
format. In terms of recording efficiency, the sampling rate and the
bit rate (number of bits used to store each sample) are the two most
important variables. Audio CDs use a 44.1 kHz sampling rate or
44,100 samples per second, and each sample uses 16 bits, which
mainly an industry standard.

Common audio streaming sites host millions of audio files, and
thousands of broadcast stations transmit audio content at any given
time. The ever-increasing amount of audio material, whether online
or on personal devices, generates tremendous interest in the ability
to recognize audio material. It achieves this by using identification
technology that seeks to work at the highest degree of accuracy and
specificity.

Songs recognition identifies a song segment either from a digital
or an analog audio source. Song rankings are based on radio / TV
broadcasting or streaming; copyright protection for songs or auto-
matic recognition of songs that a person wishes to identify while
listening to them are different applications of such a system. Im-
portant information such as song title, artist name, and album title
can be provided instantly. To create detailed lists of the particular
content played at any given time, the industry uses audio fingerprint-

ing systems to monitor radio and TV broadcast networks. Through
automatic fingerprinting devices, royalties’ processing relies on the
broadcasters who are required to produce accurate lists of content
being played.

Given the high demand for an application, several approaches
have already been studied based on song fingerprinting recogni-
tion, such as [1]–[4] and [5]. Nowadays, the state of the art of
recognition techniques are those developed by Shazam [6], [7] and
SoundHound [8], and the detection system by [9]. These services
are widely known for their mobile device applications.

Audio streams of many broadcast channels or recordings of
different events are typically analyzed using fingerprint systems for
media monitoring. As these systems work on massive quantities of
data, the data models involved should be as small as possible, while
the systems need to efficiently run on massive and growing reference
databases. Besides, high robustness criteria are determined by the
application for media monitoring. Although the sensitivity to noise
may not be the primary concern for this use case, the systems need
to identify audio content that different effects may have changed.

Android is the most popular mobile operating system globally,
despite the presence on the world market of the likes of Apple
iOS. It is mainly used for smartphones and tablets, but thanks to
its characteristics, it is also extended to other devices, such as lap-
tops, cameras, and IoT devices. Developing applications requires
Android Software Development Kit (SDK), which contains all the
tools to create and run new software, such as debuggers, libraries,
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and emulators. The integrated development environment (IDE) of-
ficially supported for this purpose is Android Studio, released and
available for free from the official developer site for Android and
the SDK. Applications are Java-based and are distributed through
self-installing packages, i.e., Android application package (APK)
files (a variant of the format JAR), which contain all the components
and resources of the created software, including source code, XML,
images, and binary files.

In particular, this research deals with the process and the the-
oretical notions that lead to the generation of linekeys previously
mentioned in [10], and [11]. Music recognition is a method of iden-
tifying a segment of an audio signal from a digital or analog source;
this process uses the power spectral density (PSD) to process the
acquired data to obtain complete information about the audio signal
source. The fingerprint generation takes place on the client-side,
in this case, the Android mobile application. The communication
protocol, shown in Fig. 1, depicts the process of communication
and interfacing with the recognition server with database collection.

Figure 1: Client and server protocol interface

2 Challenges

The number of songs in the music industry has recently increased
significantly, according to a report in [12]. With massive databases,
the management and identification of songs using a conventional
relational database management system have become more difficult.
For large datasets, a common linear search technique that checks the
existence of any fingerprint in an array one at a time has a noticeable
decrease in efficiency [13]. The stored information, therefore, needs
a scalable database system to meet the execution time, memory use,
and computing resources for recovery purposes, which is suggested
in [14].

Song recognition systems usually operate on vast amounts of
data and are expected to meet several robustness requirements de-

pending on the actual use case. Robustness to different kinds of
lossy audio compression and a certain degree of noise would seem
to be the minimum requirement. Systems designed to detect short
audio segments’ microphone recordings involve high background
noise robustness, such as noise and distortion, or even multiple
songs played in the surrounding.

It is crucial to have robust and quick recognition for effective
song information retrieval. Major consumers need details about
trending tracks, airtime schedules, and song versions, such as music
labels, manufacturers, promoters, and radio stations. They, therefore,
demand an application that is capable of generating information that
is fast and precise.

In the field of real-time song recognition, the entertainment
industry, particularly in music, the extensive collection of digital
collections, and the commercial interest are opening new doors to
research. In 2017, the global digital music industry expanded by 8.1
percent, with total revenues of US$ 17.3 billion, according to IFPI
’s Global Music Report 2018 [15]. For the first time in the same
survey, 54 percent of the revenue alone comes from digital music
revenue.

However, the most challenging application for bringing new
songs to listenership is still the FM frequency radio station. The FM
frequency channel for music broadcasting in European countries
is still actively reliant on radio stations [16]. Radio stations and
music companies have been working to advance music industry data
analytics by creating ways of analyzing broadcast songs through
new services and platforms.

It is an interest to broadcasters and advertisers to measure radio
audience size and listening patterns over a broadcast radio station to
achieve a source of revenue [17]. However, based on demographics
and psychographics (psychological criteria) of the target audience of
the station, variations in the region of station promotional material
can be predicted [18].

In addition to robustness criteria, the seriousness or effect of
incorrect results must be considered, and the necessary performance
recognition characteristics of fingerprinting systems must be taken
into account. For instance, if a song recognition system is used,
an unidentified match is missing, the user can waste storage space.
However, on the flip side, a specific song recognized as false match
systems that report false positives should be avoided.

Most critically, false positives are expensive for large-scale me-
dia monitoring; revenue might be attributed to the wrong artist.
False negatives, another form of error, may lead to hours of uniden-
tified material that will have to be checked with manual effort. Any
form of error would increase the maintenance cost of a system.

To overcome it, we have proposed a more scalable big data
framework using fingerprint clustering. Besides, a new recogni-
tion algorithm also was required for the new clustered collection.
We also compared the performance from both the legacy system
(non-clustered) and the new clustered database.

We define extensions of scale modifications that are likely to be
encountered when developing a framework for monitoring FM ra-
dio broadcasting stations—investigating our dataset of the reported
output of radio segments through the percentage of accuracy. This
estimation will serve as the appropriate gold standard throughout
this study, i.e., a device should be robust to at least this range of scale
noise but may be needed to cope with even more severe distortions.
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3 Problem Statement
Fingerprint databases, recognition process instances, and FM
transceivers are the legacy system in commercial use. The problems
of an audio recognition system in normal use can be described from
the following aspects:

a) Near Similarity: This occurs when virtually the same audio
fingerprints are produced by two or more perceptually different
audio recordings, leading to serious problems in the recognition
process. Therefore, the key goals when developing an audio finger-
printing algorithm are to keep the probability of collision as minimal
as possible.

b) In-variance to noises and spectral or temporal distortions:
Audio signal is usually degraded to some degree due to some kinds
of sounds and vibrations when captured or playing in actual en-
vironments. The audio fingerprints of the damaged audio signal
can be the same as those of the original signal. Important features
are still unchanged. In cases of this fingerprinting technique, high
robustness must be obtained.

c) Minimum length of song track needed for identification: Due
mainly to time and storage limitations, making the entire of an
unknown audio track in real-time music recognition is still impracti-
cal. Nevertheless, it is ideal that only a few seconds of the track is
required to find the unknown audio.

d) Retrieval speed and computing load: Recognition results
can be provided in a few seconds in most real-time applications.
However, with the increase in song recordings in the audio refer-
ence database, locating the matching object correctly in real-time
becomes very difficult.

A fingerprint is a type of distinct digital representation of the
waveform of a song. A fingerprint can be obtained by collecting sig-
nificant characteristics from the various audio properties. Without
sacrificing its signature, the created fingerprint may also be seg-
mented into several parts. Moreover, fingerprints can be processed
at a much smaller scale relative to the audio waveform’s initial form.

The items below are several criteria that should take into consid-
eration for a robust audio fingerprint:

• Consistent Feature Extraction: The key feature of fingerprint
generation is that it can replicate an audio fingerprint identical
to that of a music section.

• Fingerprint size: Fingerprint file size has to be small enough
so that more music collections can be stored in the database.
In reality, a lightweight fingerprint offers effective memory
allocation during processing.

• Robustness: Even if external signal noise has affected the
source audio, fingerprints may be used for identification.

4 Related Works
We provided our outstanding contributions to the academic litera-
ture that satisfy all the success criteria listed above. We show that,
despite our large comparison sets, our method is efficient and that
there is an extensive search problem caused by the invariances of
the hashes and their robustness in signal modifications. Mainly, we

designed the proposed device for low-cost hardware, demonstrated
its capabilities, and avoided costly CPU processing.

Despite studies on the identification of songs and fingerprints
by other researchers such as Shazam [7] and SoundHound [8]. We
understand the clustering design using K-means for an experiment
in the real fingerprint database with a set of 2.4 billion fingerprints
provided by the company as datasets. We want to emphasize that
a database of this scale seldom appears in the research literature,
but there is a chance that it exists. The next critical aspect was the
audio recognition system. Although initial K-means computing for
compilation is resource-intensive, we achieved significant speed
efficiency at the end of the day [19]. Also, the proposed architecture
and algorithm will lead to a new insight into song recognition.

Moreover, we had introduced an IoT-based solution to song
recognition in a cloud environment in this study. We have devel-
oped a recognition system to integrate audio streams from remote
FM Radio stations [20]. We conducted a song recognition technique
based on the K-modes clustered cloud database of MongoDB [11].
We supported various collections of fingerprint length tests to ensure
the best accuracy and reliability of the test.

The new fingerprint extraction technique’s significant findings
focused on Short Time Power Spectral Density (ST-PSD) was also
implemented [10]. Later of which binary encoding group’s attributes
lead to the reliability of K-modes. Besides, this study clarified the
identification methodology primarily through hamming distance
measure in the predetermined cluster table. The findings were given
by sampling 400 random 5-second queries from the initial song set
in the experiment. Using this method, the optimal chosen combina-
tion of parameters is the identification ratio of 90%.

We have already introduced extracting fingerprints from audio in
our previous works based on the ST-PSD calculation. We introduce
several significant and remarkable improvements to the previously
proposed algorithm to enhance the robustness of the linekeys to tem-
poral shift and the consistency of the fingerprints for perceptually
distinct audio signals in this paper. The proposed fingerprints are
based on calculating the audio signal’s short time spectral power
density ST-PSD obtained on the Mel frequency scale.

According to our tests and performance measurements, the
framework can be used specifically for different areas of finger-
printing applications. In addition to typical fingerprint applications,
these are, for instance, the identification of audio copies and media
tracking, copyright identification of songs.

5 K-means Clustering in MongoDB
Database Methodology

K-means clustering is used for non-classified results, which per-
forms an unsupervised algorithm for many data. The fingerprints
are grouped into subgroups by the K-means classification. As such,
objects in the same category (clusters) are more similar to each
other. Whereas K-means is often used for high-dimensional data
classification, we take advantage of the centroid value as a distance
point when executing the nearest computation in this experiment.
The basis for using K-means is that we need to create relatively
uniform dataset-size clusters.

The K-Means clustering is method of partitioning n data, into k
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clusters in which each data is associated with the cluster with the
nearest mean (intra-cluster distance). Thus, several different distinct
clusters are formed. Therefore, the primary goal of K-means is to
minimize intra-cluster distances. This is done by determining the J
index as Equation (1) follows:

J =

k∑
j=1

n j∑
i=1

||x( j)
i − c j||

2 , (1)

where c j is the mean value of the j-th cluster with i ≤ j ≤ n,
and x( j)

i represents a fingerprint that falls into the j cluster. The
c j is usually called centroids. Sets of k clusters, k + 1 boundaries
and k centroids are discovered by the K-means algorithm, reducing
the J optimization index. More precisely, a fingerprint partition
set of S = {S 1, S 2, . . . , S k} resulting from fingerprint partitions is
computed from:

argmin
S

J (2)

As reference points, the c j centroids of the clusters are used.
Nevertheless, we are expected to specify the number of k clusters
subsequently computed. Figure 2 provides an overview of the clus-
tering phase in this implementation, where the original fingerprint
collection stored in MongoDB was initiated.
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Figure 2: K-means clustering implementation overview

A reduced data sample of 2 · 106 (random segment) was selected
from the overall selection based on the fingerprint distribution anal-
ysis. There is no particular data restriction that the K-means can
carry out. However, this depends on computational power, time
constraints, and other hardware specification.

Furthermore, once the calculation is completed, the centroids’
values are generated and represent a key value for the MongoDB
cluster array. Next, the nearest distance fingerprints were deter-
mined to the centroid value and transferred the data to the subgroup
collections.

5.1 Stepwise Implementation of K-means

The experimentation aimed to produce several k = 10, 000 clusters
with key centroids values as reference. In the next phase, song
fingerprints are distributed into the new clustered collections.

Step 1: Batch Data Processing
The original approach was to separate the first instances into blocks
by introducing a segmentation of data while handling many data
for K-mean computation. Next, using the pickle data structure in

python, the trained model was stored from the computation. Sub-
sequently, once all fingerprint datasets were collected, we used
the previous model values and incrementally updated them. Code
Listing 1 shows the steps of the python scikit-learn library [21]
implementation algorithm for K-means. Below describe the steps
of the data training sequence:

1. As the first elements of n cluster centres, the algorithm selects
10, 000 points.

2. Then, each 100, 000 of linekeys that were loaded into memory
and loaded to the K-means calculation using these data. Each
cluster center was recomputed as the average of the points in
that cluster.

3. Finally, the function at item 2 is repeated until the clusters
converge. If there is no further change in the assignment of
the fingerprints to clusters, the algorithm converges.

def dumpFitKmean ( n c l u s t e r s , i , chunk , c h u n k s i z e ) :
i f i ==1:

X = chunk
mbk = KMeans ( i n i t = ’K−means++ ’ , n c l u s t e r s = i n t (

n c l u s t e r s ) , n i n i t =1 , r a n d o m s t a t e =42)
e l s e :
X = chunk
mbk = ge tF i tKmean ( i −1)
mbk . f i t (X)
p i c k l e . dump ( mbk , open ( ” pickelDump ”+ s t r ( i )+” . p ” , ”wb” ) )

def ge tF i tKmean ( i ) :
dumpFi le = ” pickelDump ”+ s t r ( i )+” . p ”
mbk = p i c k l e . l o a d ( open ( dumpFile , ” rb ” ) )
re turn mbk

i f n a m e == ” m a i n ” :
i =1
c h u n k s i z e = 100000
f o r chunk in pd . r e a d c s v ( f i l e n a m e , c h u n k s i z e=c h u n k s i z e

, h e a d e r=None ) :
dumpFitKmean ( n c l u s t e r s , i , chunk , c h u n k s i z e )
i = i +1

Listing 1: A Python implementation of K-means computation

Step 2: Building Cluster Segmentation in MongoDB
Once the centroid values were formed, the distance to each centroid
was calculated for each fingerprint f (i) in order to find its partition
affiliation by Equation (3)

p(i) = arg
k

min
j=1
|| f (i) −C j|| (3)

In order to obtain the distance for the fingerprint f (i), the Eu-
clidean distance was performed between f (i) and any centroid value
C j. From the distance function list, argmin was used to get the
minimum distance. As a result, acquired the fingerprint association
p(i) with its corresponding cluster S p(i) .

The code in Listing 2 demonstrates the steps of the algorithm im-
plemented in python to obtain an aggregation of fingerprint-clusters.

def c e n t r o i d l i n e k e y s d i s t a n c e ( s e l f , l i n e k e y s ,
i n d e x C e n t r o i d s , c e n t r o i d s ) :

d i s t a n c e = abs ( ( i n t ( l i n e k e y s )− i n t ( c e n t r o i d s ) ) )
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r e s u l t = d i s t a n c e , c e n t r o i d s , i n d e x C e n t r o i d s
re turn r e s u l t

def g e t C e n t r o i d s D B ( s e l f ) :
r e s u l t = s e l f . c o l l e c t i o n c e n t r o i d s . f i n d ( )
r e s u l t = [ [ document [ ’ i d ’ ] , document [ ’ c e n t r o i d s ’ ] ] f o r

document in r e s u l t ]
r e s u l t = s o r t e d ( r e s u l t , key=lambda x : x [ 1 ] )
re turn r e s u l t

def u p d a t e C e n t r o i d s D B ( s e l f , s o r t e d D i s t a n c e , songNo ,
l i n e k e y s , l i n e k e y s P o s i t i o n ) :

s e l f . c o l l e c t i o n u p d a t e C e n t r o i d s = s e l f . db [ ’
z e n t r o i d 2 s o n g ’+ s t r ( c e n t r o i d I n d e x ) ]

s e l f . c o l l e c t i o n u p d a t e C e n t r o i d s . i n s e r t ( { ’ SongNo ’ :
songNo , ’ l i n e k e y s ’ : l i n e k e y s , ’ l i n e k e y s P o s ’ :
l i n e k e y s P o s i t i o n } )

Listing 2: Python code fingerprint-cluster association

5.2 Song Recognition and Information Retrieval

During the recognition phase, the fingerprint sequence in the clus-
tered fingerprints database must be identified. The algorithm per-
forms a sequential search window in two stages. First, allocate each
fingerprint in the query sequence to the nearest centroid value. Then,
perform an in-depth search within the corresponding cluster values
and obtain a set of candidates. Here, by applying a similar algorithm
to the clustering method to ensure the accuracy of the result.

The benefit of the implemented cluster framework is that a bi-
nary search technique can be used according to [22]. The first step
is to find the position of a specific fingerprint query value within the
sorted array. This method examines and searches the nearest key
value for the median centroid key value of the selected fingerprint
in each step.

5.2.1 Real-Time Slide Window

Figure 3 illustrates the method used to classify a song based on
an input fingerprint source. As seen, the fingerprint query stream
was chunked into significant portions of the windows. This sliding
window approach is a common information retrieval technique used
to detect matching sequences. Each window represents a part of the
time in the current album. As mentioned above, each fingerprint
represents an instant δ of the audio source. Configurable finger-
prints window sizes, e.g. 500, 1000, 2000, 3000, 5000 or 6000
which translate into the actual time section, are essential. Here, it is
suggested that the window size does not exceed 6000 fingerprints,
as this represents around 60 seconds of actual audio.

Figure 3: Fingerprint Windows Slides Recognition

Each fingerprint is not unique, so that it could appear in some
songs, and then a set of song candidates will be provided. However,

in the quest for a result, we can exclude those candidates and obtain
a winner. It was next, segmenting a sub-window of 3/4 from the
fingerprints used in the window. This sub-segment window aims
to reduce the time for recognition. Also, the selected fraction size
weight is appropriate to reflect the full fingerprint in the window.

5.2.2 Fingerprint Cluster Identification and Recognition

There are two stages of the recognition process for each fingerprint
query for the search’s effective result. Firstly, to determine the clus-
ter p(i) representing the nearest centroid as in Equation (4) . The
value of the fingerprints q(i) is compared to the value of each cen-
troid C j. Therefore, returns the cluster p(i) from the set of partitions
to get the nearest reference.

p(i) = arg
k

min
j=1
||q(i) −C j|| (4)

Finally, Equation (5) returns the minimum value argmin be-
tween the fingerprint query q(i) with the fingerprint set f p(i)

j within
the defined cluster p(i). This results in a single result of w f (i) of the
song details (title).

w f (i) = argmin
j
||q(i) − f p(i)

j || (5)

Each winner of the fingerprint w f (i) will be associated with a
set of songs stored in the collection containing the w f (i) in their
sequence. For these songs, the column list entry is set to ”1” with
an entry for each song to be recorded. For this reason, the following
subsection 5.2.3 will be clarified by maintaining a record of N
columns forming a matrix called songs.

Code Listing 3 shows the steps implemented in python for fin-
gerprint recognition.

def c e n t r o i d l i n e k e y s d i s t a n c e ( l i n e k e y s , i n d e x C e n t r o i d s
, c e n t r o i d s ) :

d i s t a n c e = abs ( ( l i n e k e y s − c e n t r o i d s ) )

def g e t l i n e k e y s m a t c h ( c e n t r o i d I n d e x , l i n e k e y s ) :
c o l l e c t i o n c e n t r o i d s V a l u e s = db [ ’ z e n t r o i d 2 s o n g ’+ s t r (

c e n t r o i d I n d e x ) ]
r e s u l t = c o l l e c t i o n c e n t r o i d s V a l u e s . f i n d ( { ’ l i n e k e y s ’ :

l i n e k e y s } )

i f n a m e == ” m a i n ” :
f o r l k in i n p u t L i n e k e y s :
s o r t e d D i s t a n c e = min ( d i s t a n c e )

Listing 3: Python fingerprint recognition

5.2.3 Candidates Scoring

From the previous step, the information for each song was obtained
from a single fingerprint question. However, it is crucial to assess
the overall result inside the fingerprint sequence in the defined win-
dow. Therefore, using the Equation (6) to determine the frequency
of F(n)

k of the song results in a N row fingerprint window. The
highest score value of the song would be as winning candidates for
the window section.

F(n)
k =

N∑
i=1

songsk,i (6)
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where n is the index of the current window. Thus evaluating the
winner song using Equation (7).

ws(n) = argmax
k

F(n)
k (7)

As an initiation a counter is set to the value 1.Each winning song
that is ws(n) = ws(n−1) will increase the counter value. Therefore, as
soon as the winning song ws(n) , ws(n−1) evaluates the W number
of subsequent windows for the same winner it will reset the counter
back to 1. Therefore the length of the airtime song is evaluated as
d = N ·W · δ.

6 IoT Based Song Recognition
As shown in Figure 4, the system framework is planned to access
the FM Frequency source at a different location by deploying a low-
cost IoT system receiver. This FM receiver streams the audio to a
cloud instance that converts it to an audio file that is then processed
for recognition. Each module of software and hardware configura-
tion components must be integrated to achieve this implementation.
Each of these components is discussed in the next section, which
includes the IoT system 6.1, the communication protocol 6.2, the
recognition server 6.3, and the clustered database.

 

  

Advertisers

Consumers

 
Applications

Figure 4: Overview of IoT based Song Recognition Framework

6.1 IoT Device Design

Software-defined radio (SDR) offers a level interface that allows
access to filters, mixers, amplifiers, modulators/demodulators on
software, meaning on computer embedded systems. This imple-
mentation uses RTL-SDR USB dongles based on the RTL2832U
chipsets [23] that can read frequencies between 24 and 1,766MHz.
The Raspberry Pi is a single-board computer made on a single board
and, therefore, small and cheap. It can be used for light program-
ming or, as in this project, to create devices dedicated to the Internet
of Things or home automation with various sensors. The operating
system used in the project is Raspbian, an official distribution of
Raspberry Pi, based on Debian Linux and suitably adapted to the
Raspberry Pi. The operating system was downloaded via NOOBS
to a 16GB MicroSD.

The FM radio receiver is built using a Raspberry Pi and a dongle,
which converts the analog audio signal into a digital audio stream.
Python libraries were used for the application, more specifically,

the library to launch RTL-FM. The python syntax with the options
required to play an FM radio station is shown in Listing 4.

import s u b p r o c e s s , s i g n a l , os
def n e w s t a t i o n ( s t a t i o n ) :
g l o b a l p r o c e s s , stnum

p a r t 1 = ” r t l f m − f ”
p a r t 2 = ” e6 −M wbfm −s 200000 − r 44100 | a p l a y − r

44100 − f S16 LE ”
cmd = p a r t 1 + s t a t i o n + p a r t 2
p r i n t ’ P l a y i n g s t a t i o n : ’ , s t a t i o n

# k i l l t h e o l d fm c o n n e c t i o n
i f p r o c e s s != 0 :
p r o c e s s = i n t ( s u b p r o c e s s . c h e c k o u t p u t ( [ ” p i d o f ” , ” r t l f m

” ] ) )
p r i n t ” P r o c e s s p i d = ” , p r o c e s s
os . k i l l ( p r o c e s s , s i g n a l . SIGINT )

# s t a r t t h e new fm c o n n e c t i o n
p r i n t cmd
p r o c e s s = s u b p r o c e s s . Popen ( cmd , s h e l l =True )

def s e t v o l u m e ( thevo lume ) :
os . sys tem ( ’ amixer s s e t ”PCM” ’ + t hevo lume )
p r i n t ’ volume = ’ , t hevo lume

p r o c e s s = 0

whi le True :
answer = raw input ( ” E n t e r a r a d i o s t a t i o n ( i . e . 1 0 7 . 9 )

o r volume ( i . e . 50%) : ” )
i f answer . f i n d ( ’%’ ) > 0 :
s e t v o l u m e ( answer )
e l s e :
n e w s t a t i o n ( answer )

Listing 4: Python RTL-FM Frequency Configuration

Figure 5: Raspberry Pi with RTL-DSR module Hardware

Figure 5 shows the actual physical Raspberry Pi device config-
ured with the RTL-SDR hardware module.
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Figure 6: Overview of Framework of IoT device protocol to Recognition Server

6.2 Communication Protocol

Once established the FM frequency channel, we stream the Rasp-
berry Pi output using Real-Time Streaming Protocol (RTSP) with
a specific TCP/IP port to maintain end-to-end connection using a
python RTSP libraries [24]. The RTSP server will process incoming
requests for streams.

Figure 6 shows the component of the Raspberry Pi IoT de-
vice and the recognition server communication protocol. The IoT
server’s final packets consisted of 5 seconds of fingerprint conver-
sion, which is encapsulated as a JSON string as a packet. Addi-
tionally, the audio conversion fingerprint algorithm is embedded
inside the IoT device; thus, a smaller size packet of string could be
transferred much faster. Therefore, the recognition of the fingerprint
will be done on the server instance once receiving the packets. The
listening port is open as a service for both sides with a directory
observer to monitor any incoming packets as demonstrated in code
Listing 5.

def p o s t J s o n ( l i n e k e y s , newFilename ) :
p r i n t ” p o s t i n g ”
d a t a = { }

d a t a [ ’ f i n g e r p r i n t F i l e ’ ] = newFilename
d a t a [ ’ l i n e k e y s ’ ] = map ( s t r , l i n e k e y s . t o l i s t ( ) )
p r i n t d a t a

r e q = u r l l i b 2 . Reques t ( ’ h t t p : / / l o c a l h o s t :8008 ’ )
r e q . a d d h e a d e r ( ’ Conten t −Type ’ , ’ a p p l i c a t i o n / j s o n ’ )
r e s p o n s e = u r l l i b 2 . u r l o p e n ( req , j s o n . dumps ( d a t a ) )

c l a s s Watcher :
DIRECTORY TO WATCH = ” / home / p i / Desktop / PiRad io /

i n p u t f i l e / ”

def i n i t ( s e l f ) :
s e l f . o b s e r v e r = O b s e r v e r ( )

def run ( s e l f ) :
e v e n t h a n d l e r = Hand le r ( )
s e l f . o b s e r v e r . s c h e d u l e ( e v e n t h a n d l e r , s e l f .

DIRECTORY TO WATCH, r e c u r s i v e =True )
s e l f . o b s e r v e r . s t a r t ( )
t r y :
whi le True :
t ime . s l e e p ( 5 )
e xc ep t :
s e l f . o b s e r v e r . s t o p ( )
p r i n t ” E r r o r ”
s e l f . o b s e r v e r . j o i n ( )

Listing 5: HTTP Protocol of Fingerprint Exchange

6.3 Recognition Server

A fingerprint is a digital vector that identifies a piece of song signal
and can outline the content of that piece of the song. The fingerprint
is achieved by removing the main characteristics from audio by
choosing distinctive features. Also, fingerprints for storage will
minimize the size of the original song with the standard structure.

In this phase, as shown in Listing 6, the streaming audio is con-
verted to .wav file in such a way it could be further converted into a
sequence of fingerprints.

p a r t 1 = ” r t l f m − f ”
p a r t 2 = ” e6 −M wbfm −s 200000 − r 44100 | sox − t raw −e

s i g n e d −c 1 −b 16 − r 44100 − i n p u t f i l e / r e c o r d ”+

s t r ( numberCount )+” . wav”
cmd = p a r t 1 + s t a t i o n + p a r t 2
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def ge tArrayKey ( f i l e n a m e , n o O f S p l i t , windowlength , s t e p ) :
f f t s i z e =128
y F i n a l = [ ]
D, f s = s f . r e a d ( f i l e n a m e )
r = D. s i z e
c = 0
i f c > 1 :

D = multiToMono (D)
D = np . a r r a y s p l i t (D, n o O f S p l i t )

Listing 6: Conversion Recording Stream to Audio .wav

The features below are the qualities of an audio fingerprint that
we take into consideration:

• Consistent Feature Extraction: The essential part of the fin-
gerprint generation is that it can reproduce a similar audio
fingerprint given only a segment of the audio.

• Fingerprint size: The fingerprint’s size has to be small enough,
so a more exhaustive song collection can be archived in the
database. Furthermore, a well-compressed fingerprint uses
efficient memory allocation during processing.

• Robustness: Fingerprint can be used for recognition even if
the source audio has been affected by external signal noise.

7 Mobile Music Recognition App
The Android application detects and captures audio through the
device’s microphone, the audio signals and then converts them into
fingerprints. The application was developed and compatible with
API version 19 (KitKat) and earlier version. It comprises five object
classes that includes FFT, PSD, Fingerprint, MainActivity, Recor-
dAudio, and ToolsAudio. The following will discussed on class
MainActivity which provides the function RecordAudio, as in the
UML Figure 7

Figure 7: Class MainActivity for RecordAudio

The class MainActivity is identified as Activity, which is essen-
tially a window containing the application user interface, consisting
of a file XML relative to the layout displayed from a class.

Java programming is used to define their behavior; its purpose
is to interact with users and goes through various standard function-
ality cycles, as in Figure 8. When an activity runs, three methods
are invoked to interact directly with the user: onCreate, onStart, on-
Resume; when instead Android puts the activity to rest, the methods
invoked are onPause, onStop, onDestroy.

Figure 8: Android Java classes function cycle

Therefore, the graphic interface interacts with the class provided
by MainActivity; which overrides its default method internally, on-
Create is invoked when the activity is created.

To manage the user’s interaction with the button, it requires to
associate a listener method defined as onClickListener , through the
method setOnClickListener.The class onClickListener is an abstract
however once an instance of it has been created, the method has
been redefined through onClick.

The onClick as in Listing 7, will provide instructions to be ex-
ecuted when the button is clicked. The process flow implemented
is as follows: when the ”Register” button is press, as shown in Fig-
ure 9, the variable is checked startRecording to check whether the
registration service is started or not. Therefore, the method will be
start recordAudio of the class RecordAudio to record audio signals.
Next, the label ”Stop” button initiates the stop service. This basic
function is almost similar to Shazam’s mobile app.

r e g i s t e r b u t t o n . s e t O n C l i c k L i s t e n e r ( new View .
O n C l i c k L i s t e n e r ( ) {

p u b l i c vo id o n C l i c k ( View v ) {
i f ( s t a r t R e c o r d i n g ) {
au . r e c o r d A u d i o ( ) ;
r e g i s t e r b u t t o n . s e t T e x t ( ” Stop ” ) ; }

e l s e {

au . c l o s e ( ) ;
r e g i s t e r b u t t o n . s e t T e x t ( ” R e g i s t e r ” ) ;
}

s t a r t R e c o r d i n g =! s t a r t R e c o r d i n g ; }
} ) ;

Listing 7: Java button.setOnClickListener
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Figure 9: User interface for Start and Stop recoding Audio

The final method implemented was the requestPermissions,
which allows the application to request user permission for using
the internal microphone. This method is related to onRequestPer-
missionResult, which manages the results granted the use of the
physical module from the mobile.

7.1 Audio Recording

The implementation of audio detection is done by the class Recor-
dAudio. For this purpose, the use of libraries is particularly impor-
tant:

• android.media.MediaRecorder, for recording an audio
stream;

• android.media.AudioRecord, to manage audio resources;

• android.media.AudioFormat, to access audio formats and
channel configurations.

The method recordAudio as shown in Listing 8, it is invoked by
the MainActivity as previously described. The invocation will create
a thread that initially does the following:

• the priority of the thread for the acquisition of audio signals
is set;

• the bufferSize, the maximum size of bytes that the thread can
detect at each cycle;

• an object AudioRecord is created, which sets different spec-
ifications, such as the audio source data (DEFAULT that is
the microphone), the sampling frequency (44100), the num-
ber of channels (MONO), the coding PCM (16 bit), and the
bufferSize;

• the method invoked startRecording on the newly created ob-
ject to initialize and start the audio capture session.

vo id r e c o r d A u d i o ( ) { new Thread ( new Runnable ( ) {
@Override
p u b l i c vo id run ( ) {

a n d r o i d . os . P r o c e s s . s e t T h r e a d P r i o r i t y (
a n d r o i d . os . P r o c e s s . THREAD PR IORITY AUDIO ) ;
i n t b u f f e r S i z e =

AudioRecord . g e t M i n B u f f e r S i z e (SAMPLE RATE ,
AudioFormat . CHANNEL IN MONO,
AudioFormat . ENCODING PCM 16BIT ) ;
b y t e [ ] a u d i o B u f f e r = new b y t e [ b u f f e r S i z e ] ;
AudioRecord r e c o r d = new
AudioRecord ( MediaRecorder . AudioSource . DEFAULT,
SAMPLE RATE ,
AudioFormat . CHANNEL IN MONO,

AudioFormat . ENCODING PCM 16BIT ,
b u f f e r S i z e ) ;
r e c o r d . s t a r t R e c o r d i n g ( ) ;

Listing 8: Mobile Audio Recording

To read input data from smartphone microphone, the class Au-
dioRecord is used in a while loop read in which is recorded in a
byte array. Therefore, data is not immediately sent to the class Fin-
gerprint for their conversion into linekeys, but an adequate number
of iterations is expected for a given number of byte to be read. Thus
the transformation of a static vector is always performed by creating
a thread, as already discussed. The size of the data to be converted
has been chosen so that there are no errors in the process they will be
requested, especially in the method buffer of the class Fingerprint.

7.2 API Design

As part of this project, for communication purposes between client
and server, an API has been developed that uses REST’s architec-
tural style. The web server was developed in Python. It implements
an HTTP server and contains the pyMongo API, which is necessary
for interfacing with the database. The project foresees the Mon-
goDB non-relational database for the fingerprint storage similarly
used in work in [19]. The first step was to install the MongoDB
database and all dependencies (Python libraries) required by the
source code. MongoDB is a NoSQL type DBMS that stores JSON
format. A cURL is a command-line tool for transferring data over
the network using an HTTP protocol. The advantage lies in its
independence from the programming language used. It is proved to
be particularly useful for testing the interaction with the server, and
therefore the appropriately agreed HTTP request.

7.2.1 Fingerprint Packets Structure

The JSON format for the exchange of data between client and server
is constructed. The file is structured in such a way that it has two
fields. Firstly, the name-value pair which indicates the fingerprint-
File ID, therefore of the form ”name”:”value”. The value is a
progressive integer that identifies the ID of the JSON request con-
taining the fingerprints. Note that the server requires this to be a
string type.

Next, the values contain linekeys, concatenated one after the
other. The number of linekeys present in the array is not fixed, but
the code must be implemented to parameterize the linekey num-
ber, i.e., generalized to number possible values. This is a design
parameter, and according to the specifications, it has been set to 50
linekeys.

The following in Listing 9 shows an example of a JSON file, in
its complete form, which has 4 set linekeys (fingerprints) and the
fingerprintFile ID with a value of 2.

{

” l i n e k e y s ” : [ ” 13844060856490393600 ” , ”
8645919525052907526 ” , ” 6054232079929966592 ” , ”
7274368929366016 ” ] ,

” f i n g e r p r i n t F i l e ” : ” 2 ”
}

Listing 9: JSON Fingeprint packets
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7.2.2 Web Server and API Protocol

A Python code in the file has been implemented server.py API that
allows communication with the server. The code is isolated from
communication with the MongoDB database for the time being and
shows the response of HTTP requests arriving from clients. Some
of the classes and their relationships are shown in Figure 10.

The following Listing 10 shows the code fragment related to
the HTTP web server’s implementation where the parameter server
address is defined. By default, the port number set is 8009.

def run ( s e r v e r c l a s s =HTTPServer , h a n d l e r c l a s s =

Serve r , p o r t =8009)
s e r v e r a d d r e s s = ( ’ ’ , p o r t )
h t t p d = s e r v e r c l a s s ( s e r v e r a d d r e s s , h a n d l e r c l a s s )
p r i n t ( ’ S t a r t i n g h t t p d on p o r t% d . . . ’ % p o r t )
h t t p d . s e r v e f o r e v e r ( )
p r i n t ( ’ S t a r t e d h t t p d on p o r t% d . . . ’ % p o r t )

Listing 10: Python HTTP Class

The code Listing 11 is related to the structure of HTTP header
request accepted by the server. The method headerSet() handles the
parameters of the HTTP request, and the way to response in case
errors occur. For example, if the body contained a format other than
JSON, a status code would be sent 400.

def h e a d e r S e t ( s e l f ) :
s e l f . s e n d r e s p o n s e ( 2 0 0 , ” ok ” )
s e l f . s e n d h e a d e r ( ’ Conten t − t y p e ’ , ’ a p p l i c a t i o n / j s o n ’ )
s e l f . s e n d h e a d e r ( ’ Accept ’ , ’ a p p l i c a t i o n / j s o n ’ )
s e l f . s e n d h e a d e r ( ’ Access−C o n t r o l −Allow−O r i g i n ’ , ’ ∗ ’ )
s e l f . s e n d h e a d e r ( ’ Access−C o n t r o l −Allow−C r e d e n t i a l s ’

, ’ t r u e ’ )
s e l f . s e n d h e a d e r ( ’ Access−C o n t r o l −Allow−Methods ’ , ’

GET, POST , OPTIONS ,HEAD, PUT ’ )

Listing 11: Python HTTP Header Request

Next, the deserialization of the JSON file begins: a dictionary
data structure is used for data storage. During the test phase, the
cURL application was used to initiate the command from client to
the server, an example of a request is shown in Listing 12

c u r l −−d a t a ” { \ ” l i n e k e y \” :\” 3 4 4 1 9 4 5 7 2 1\” , \”
r e q u e s t I d \ ” : \ ” 0 0 7 \ ” } ”

−−h e a d e r ” C o n t e n t −Type : a p p l i c a t i o n / j s o n ”
h t t p : / / l o c a l h o s t :8009

Listing 12: cURL Application Request

Figure 10: Web server UML classes

8 Evaluation and Performance
The first stages of testing and running the app were carried out using
the Android Virtual Device (AVD) Google Pixel 2. Furthermore,
the server has been configured to provide the client’s data (to verify
the correctness). Figure 11 shows the server running while listening
on port 8009.

Figure 11: Initiation of server listener

The server open to listening for incoming HTTP requests from
android clients. The layout of the android app is shown in Figure 12.
As soon as the user taps the button ”Register,” linekey generation
begins. Once the application has reach 50 linekeys, the packets will
be sent to the webserver for recognition.

Execution continues and, if the HTTP request was successful
and the packet is valid, the server status code is displayed ”200
OK”. Figure 13 shows that the linekeys have been received while
the confirmation is shown on the right.
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Figure 12: Listening for incoming HTTP requests

Figure 13: Successful HTTP requests

In any case, the generation of the linekeys proceeds in real-time
and received queued HTTP requests follow one after the other until
the user immediately ends the generation execution by tapping on
the ”Stop” button. A web server’s public IP address is used in the
final phase, which resides in the department lab. The app was in-
stalled on a physical Android smartphone using the APK generated
by Android Studio for the real purpose.

8.1 Performance Evaluation: ST-PSD Fingerprint

This section provides the evaluation of the proposed method ST-
PSD fingerprints. As noted earlier, to verify the proposed hamming

distance computing algorithm for music recognition (a method of
exploring the Hamming distance for audio fingerprinting systems),
an evaluation was carried out using real music data.

The proposed approach’s efficiency was evaluated by experi-
ments using a set of 100 real songs, with 4 real queries for each song,
selecting the starting point of the piece of audio to be recognized at
random. The random position was selected in the sample domain
of the audio so that the extraction of the line keys is not associated
with the reference keys found in the collection. Also, each piece of
audio corresponds to a length of 5s.

8.1.1 System parameters

Candidates Scoring The linear combination of two sub-score
metrics was considered in order to determine a score for each song.
The first score is calculated by combining a Td threshold, i in the fin-
gerprint for each linekey. Provided the matrix Hd and the matrix Td,
a second matrix of A has been constructed in Equation (8) where:

Ai,j =

1, if Hd(i, j) < Td.

0, if Hd(i, j) ≥ Td.
(8)

then evaluate the first sub-score in Equation (9) for each song
as:

B j =
1
W

W−1∑
k=0

A(i, j) j = 1, . . . , σ (9)

A third matrix C as in Equation (10) was considered for the
second sub-score where each variable contains a normalized value
in the range [0 − 1] approaching 0 when the Hamming distance is
large and approaching 1 when the Hamming distance is low:

Ci, j =


(
1 − Hd(i, j)

Td

)
, if Hd(i, j) < Td.

0, if Hd(i, j) ≥ Td.
(10)

then evaluate the sub-score for each song as in Equation (11):

D j =
1
W

W−1∑
k=0

Ci, j j = 1, . . . , σ (11)

The final score for each song will be evaluated as Equation (12):

FS j = αB j + (1 − α)D j (12)

where α is a parameter in the range [0, 1] to be chosen to maximize
recognition performance.

The winner song for fingerprint F will be the song with the
higher FS j, by obtaining its index using the relation in Equation (13)

WS = arg
M−1
max

j=0
FS j (13)

The main focus is to use the optimal parameters to perform the
proper classification of audio samples. For this reason, a range of
potential parameter configurations and corresponding findings have
been investigated. Mainly, taking account the size of fingerprint in
terms of the number of line keys (W), the size of the threshold used
to create the A and C matrix (Td) and the value of the coefficient α
used to combine the two sub-scores. The following table 1 indicates
all the parameters used to test the performance measure.
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Table 1: Parameters used for performance evaluation

α [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

W [10, 20, 30, 40, 50]

Td [10, 15, 20, 25, 30]

8.1.2 Evaluation steps

Figure 14 indicates a bar graph in which the height of each bar
for the various fingerprint sizes used is proportional to the recog-
nition ratio. Mainly, the bar shows the results taking into account
the combination of parameters (α and Td), which allows better re-
sults in terms of the recognition ratio. The values of the parameter
combination are displayed within each bar.
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Figure 14: Recognition rate for different fingerprint size using the better combination
of parameters α and Td

While the identification rate does not seem so high, it must be
considered that this rate is compared to a single fingerprint. Using a
song piece larger than the fingerprint size for song recognition, the
song recognition rate can be improved using fingerprints obtained by
a sliding window added to the linekeys sequence. Even so, the fin-
gerprint recognition rate found implies that, on average, 2 would be
automatically labeled with the right song, taking a sequence of more
than 4 fingerprints. Exploiting this result will dramatically increase
the song recognition rate, which will subsequently be clarified.

For that we proposed to extract the fingerprints by applying a
sliding window that overlaps the W − 1 linekeys with the adjoining
linekeys. In this way, the fingerprint produced in each step will
be equal to the production step of each linekey (i.e., 100ms per
linekeys). Taking into account an audio piece of 5 seconds length
which equals to 50 windows (called fingerprint) and denoted as
W = 50. Thus it’s possible to produce a sub-query fingerprint size
for evaluation which is equal to W = 10, W = 20, W = 30, W = 40
and W = 50 respectively.

To improve the proposed recognition system’s efficiency, a fur-
ther discrimination variable was added, based on the distance be-
tween the two highest F-Score values obtained for each fingerprint in

the search process. Especially by evaluating the distribution of this
distance (called ∆) when the fingerprint was correctly recognized,
and the fingerprint was misclassified.

Figure 15 shows the accuracy in terms of∑
True positive +

∑
True negative∑

Total population

varying the value of threshold T∆ in a specific selected 4 win-
dows range with better combination of parameters. Therefore,
the best performance using the parameter combination equal to
(W = 10, α = 0.2,Td = 40) and a threshold T∆ ≈ 0.01. The
accuracy in this case will approach 90%.

Figure 15: Accuracy varying the T∆ threshold for different better combination of
parameters [W = 10, α = 0.2,Td = 40, W = 20, α = 0,Td = 20, W = 30, α =

0.1,Td = 40, W = 40, α = 0.1,Td = 20]

During the recognition step, if the condition ∆ < T∆ is true for
a given fingerprint, the fingerprint may ignore the relative classifi-
cation. To recognize a song played in an audio piece, count all the
classification for which the condition ∆ ≥ T∆ is checked.Using this
approach for each song in the collection will produce a counting
value, called CS i, ∀i ∈ [1, . . . , σ]. Song j is considered recog-
nized for the specified piece of audio if the counter value associated
with song j is greater then the counter value associated with all
other songs as specified in Equation (14):

CS j > CS i, ∀i , j (14)

Using this approach, the selected combination of parameters (W =

10, α = 0.2,Td = 40) and a threshold T∆ = 0.01 resulting a recogni-
tion ratio equal to 100%.

Furthermore, as in Figure 16, this proposed approach was set
for comparison with the landmark-based approach by [3]. Using the
same data set audio query and creating a landmark song database
with 10/sec fingerprint hashes. The landmark-based approach
obtains 85.25% which is marginally lower compared to the best
output accuracy of 90% with a parameter combination equal to
(W = 10, α = 0.2,Td = 40) and a threshold of T∆ ≈ 0.01.
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Figure 16: Accuracy comparison between PSD-Hamming and Landmark-Based

9 Conclusions
In conclusion, this research demonstrates the achievement of the
project’s objectives in the context of musical recognition. Client-
server communication has been implemented, managing to work on
the server-side with the programming language Python and client-
side with language Java on the Android platform.

Also, structuring the information in JSON format is a basic de-
sign for this implementation. The client is now able to forward the
generated fingerprints to a dedicated server. The graphical interface
design for Android enables the audio signal acquisition and displays
the screen’s generated fingerprints. The implementation has been
extended to show the screen feedback on communication with the
server by displaying appropriate message notifications. The finger-
prints acquired by the server then perform the recognition with that
stored database collection.

We believe it would be worthwhile to obtain a more extensive
song collection for future analysis and experiments in this direction
and be used as a commercial system. This would allow us to gain
insight into the types of effects and combinations that prevent an
automated recognition system from correctly identifying certain au-
dio query portions. We hope that our contributions can support the
active field of audio fingerprinting research. The attention to detail
in our evaluation methodology, together with provable reference
data collections, will allow our system to serve as a basis for further
research in this field.
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