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Dakar-Fann BP 5005, Senegal

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 27 July, 2021
Accepted: 17 August, 2021
Online: 28 August, 2021

Keywords:
Data streams
Summaries
NoSQL
Big Data
Real time

With the advent of Big Data, we are witnessing a rapid and varied production of huge amounts of
sequential data that can have multiple dimensions, we speak of data streams. The characteristics
of these data streams make their processing and storage very difficult and at the same time
reduce the possibilities of querying them a posteriori. Thus, it has become necessary to set up
so-called summary structures, equivalent to views on the data streams which take into account
these constraints and allow querying the data already pruned from the system. In order to
take into account the aspect of volume, speed and variety of data streams, new methods have
appeared in the field of Big Data and NoSQL. These solutions combined make it possible now
to set up summaries that make it possible to store and process different types of data streams
with more efficiency and representativeness and which best meet the constraints of memory and
CPU resources necessary for processing data streams but also with some limits.

1 Introduction

In the development of the research in Databases, Statistics, Telecom-
munication, etc, and especially with the advent of Big Data, new
applications which product intensive data have arisen in various
areas [1]–[5].

These data are no more modelizied in the same manner like
in classical databases (relational databases), but on form of tran-
sitory data streams. They have an ephemeral, continuous, veloce
and mutidimentional caracter and their data are queried as soon
as they arrived in the processing system by queries in continuous
execution before to be discarded. If there is no well defined re-
grouping mechanism in place on part of these streams and that allow
future re-execution of queries, data will be forever lost. Indeed, the
data streams characteristics not allow to plan their storage in their
globality, and make their processing relatively dependant on CPU
and memory resources. However, these data could hold required
informations for analytics traitement later. That way, it becomes
essential to know how to retain these informations or a part of them
for a future exploitation.

In this context, many works [6]–[9] have been done to make
avalaible structures or algorithms that allow to have views over data
streams for posteriori queries execution over them. These structures
are known under the denomination of data stream summaries [10].

Thus in the literature, we find two approaches of data stream sum-
mary, generalist approach and specific approach. The generalist
summary approaches of data streams allow to answer aproxima-
tively in posteriori to any kind of queries over the data stream in an
optimal manner and while respecting the storage and computation
constraints required. Specific summary approaches are tailored to
specific needs and oriented to more specific areas. In the front of
these approaches, other works have been done combining the Big
Data technologies with NoSQL databases [8], [9]. They have as
goal to bring durable solutions to processing and storage constraints
of data streams. Indeed, these technologies give largest capabili-
ties of computation and storage and offer performances in terms of
treatement that can be done over clusters of machines allowing thus
to scale-up.

The need to be able to perform real-time analysis of the data
available at all times is becoming more and more urgent in all areas.
Thus, in order to make a contribution to the question, we have as
objectives in this work (i) to make an in-depth state of the art of the
techniques and Big Data tools put in place to summarize the data
stream, (ii ) to study the advantages, disadvantages and use cases
of these tools, (iii) to describe what are the different phases of the
data stream processing and how these tools are used in these phases
(iv) and finally , to see what perspectives are opening up for a future
contribution for example to see the possibility to do OLAP analysis
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over Big Data streams.
Thus, in this paper, while taking into account the opportunities

offered by Big Data technologies, we abord in the section 2 the
problematic of storage and computation of data streams. In the
section 3, we present a state of art of the literature over the data
streams summarization. This section treats generalist and specific
approaches for data streams summaries. In the section 4, we study
the use of the Big Data technologies to produce and treat summaries
of data streams. And to finish, in the section 6, we dress the bilan
and the future works relatives to this paper.

2 Problematic of data streams storage and
processing

With the advent of intensive applications which produce huge vol-
umes of data like fraud detection, roads traffic monitoring, the
management of smart electricity meters, etc.[1]–[3], processing
of data streams is often confronted to storage and computation
constraints caused by the fact that they are generated in swift and
continuous manner with variables velocities. The unlimited nature
of data streams, produced in a rapid and continuous manner make
that the Data Streams Management Systems (DSMS) do not have
sufficient resources for their storage and processing. Indeed, the
characters (rapid, continuous, infinite, etc.) of data streams do that,
their storage in their totality is not conceivable. In the operation of
a Data Stream Management System (DSMS), data are continuously
treated on the fly relatively of a temporal windows defined in priori.
After expiration of this windows, the data expire and are discarded
from the system (lost). However, it can be very useful to submit
posteriori queries on these data. Indeed, if new needs are declared
that include a particular task that requires data already discarded
from the system, then this task will not be realizable. For example,
when a decision maker wants to know sales trends of the last day or
the power produced the last two days an equipment of the distribu-
tion system, within a temporal window of one hour, all of the data
of these last periods would no longer exist in the system if it doesn’t
exists any mechanism, like low cost storage technologies (but we
have to take into account the cost that could rise over time), to retain
these data. In that fact, one will not be able to satisfy these kinds
of requests. By the fact that the data of streams are discarded from
the system at the end of the window, some tasks that require data of
the past (no covered by the window) will never be satisfied. This
problem still remains when it comes to meeting needs combining
both unloaded data and current data (from a valid window). Indeed,
an aggregation query or a join query that contains so-called blocking
operators like MIN, MAX, AVG, Order By, Group By, etc. (for ex-
ample the maximum of sales or the sum of amounts of sales by city
of the last 48 hours by considering a windows of an hour) require
that all of required data to be available. Thus, it becomes impossible
to give satisfaction to theses kinds of queries. To efficiently answer
to these kind of needs, the ideal would be to dispose of an unlimited
memory to permanently store data. However, we are limited by a
bounded memory length. Thus, it becomes necessary to put in place
mechanisms that allow to conserve a summary of expired data in
order to provide approximate answers (acceptable) instead of the
exact answers (which are impossible to obtain).

In this study, the method followed to respond to theses needs is
defined by a series of questions:

• What are the classic data stream summary techniques with
their advantages and limitations ?

• What are the new available architectures in the context of Big
Data to summarize data streams with a comparative study of
them ?

• What tools or technologies can be used in the different layers
of these architectures?

• What are the advantages, disadvantages and use cases of these
tools?

• What are the perspectives of contribution after this study?

3 Data streams summary
A data stream summary can be defined as a structure or an algorithm
that allows to permanently store a portion of data of a stream [11],
[12]. Data streams summaries have the advantage to allow process-
ing of analytics queries posed in posteriori over the data streams.
Multiple researches works [10], [11], [13]have been proposed in the
scope of the data streams summaries and that can be grouped in two
majors approaches: the generalist data streams summary approach
[11], [14], [15] and the specific data streams summary approach
[16]–[18].

3.1 generalist summaries of data streams

A generalist summary of data streams [10], [13] is a data structure
updated as the events of a stream data arrive in the system. This
type of summary allows to answer, in optimal way, in posteriori
and approximatively to all kind of queries that can interest the final
user and that address the stream’s data. It also allows to deal with
the resources constraints (storage and computation power) subject
to data streams. To be generalist, a summary of data streams must
align with a certain number of points [13] :

• to respect the constraints of espace-memory and computation
power (1).

• to exprime itself with variables belonging to cartesian product
T XD where T is the timestamps’space and D is the set of
qualitatives or quantitatives values (2).

• to allow an approximation of all queries of type SELECT
AND COUNT over the T xD space (3).

• to allow the calculation of the approximation error in function
of CPU and memory resources available (4).

This structure must allow in the same time to calculate bounds
of approximative answers’s precision of these queries. A generalist
summary of data stream particularly looks for to control the lose
of information between the data stream and the summary produced.
Many works [11], [14], [15] have addressed the problematic of the
generalist summaries of data streams.

www.astesj.com 415

http://www.astesj.com


J.G. Sarr et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 414-430 (2021)

• The authors of [11] proposed a general description of a sum-
mary that supports two operations update(tuple) and com-
puteAnswer(). The update operation is called to update the
summary’s structure at each arrival of a new event and the
computeAnswer() function update or produce new results for
answering the posed query.

During processing of the continuous queries, the optimal sce-
nario is this where the two operations are running in a fast
way compared with the arrival delay of events into the data
stream. In that case, it is not necessary to provide special
techniques to be in phase with the data stream (no blocking
factor or bottleneck) and to produce approximative answers
in real time : as new event arrives, it will be used to update the
data structure and then new results are calculated by the way
of this structure, all of this during a time period less important
than the delay between arrivals of two successives events (i).

The algorithm proposed does not respect the constraint (3)
because the one or the two operations are slows; it then be-
comes impossible to continually produce an exact updated
answer. The (1) constraint, in this side, is satisfied by the
mean of technic describe in (i).

By the same method, we can see that constraints (2) and (4)
are in turn verified by this proposition.

• The authors of [14], in their side, proposed the StreamSamp
algorithm based on the fundamental technic of random sam-
pling of the entering data stream, followed by an intelligent
storage of generated summaries that allow to analyze the data
stream in ints entirety or in a part of it.

This process allows to this algorithm to no depend on the data
stream events arrival rate. However, the efficiency of Stream-
Samp deteriorates with time. Indeed, the weight of old events
grows over time with a fixed sample size. Consequently, if
the old events are putted together with others having a lower
important weight, then they increase negatively the variance
of the sample.

With this algorithm, the (1) constraint is assured but with a
logarithmic growth of the size of the summary according to
the stream size. Even if the data stream size is potentially infi-
nite, the logarithmic growth is a good solution in the practice.
The (2), (3) and (4) constraints are verified by the application
of the poll theory [19] that allows to pose bounds to the ap-
proximations’s quality with condition to take in consideration
the events weight, these masses depend to order of the sample
in wich they are keeped.

• The authors of [15] proposed the CluStream algorithm that
is divided in two phases, the On-line phase and the Offline
phase. The On-line phase or micro-clustering phase is the
portion of collection on line of statistics data. This processing
do not depend of any user entry like the time window upper
bound or the required granularity for the clusters construc-
tion. The goal, here, is to maintain some statistics in a level
of granularity (spatial and temporal) sufficiently high to be
used by the second phase or macro-clustering phase with a
specific time bound as good as an evolutive analyze. This

phase is inspired by the k-means and the nearest neighbour
algorithms. Thus, the on-line phase iteratively operates by
always maintening a set of micro-clusters updated by integrat-
ing the new events arrived in the system. These micro-clusters
represent the snapshots of the clusters that change in each
new occurring event of the stream.

The off-line phase begins by creating a certain number of
initials micro-clusters at the start of the data stream. Thus, at
the start of the data stream, a number InitNumber of events is
stored over hard drive and a k-mean algorithm is then used
to create the initials micro-clusters. The number InitNumber
is chosen in order to be the larger possible authorized by the
k-mean algorithm processing complexity by creating initial
micro-clusters.

This proposition satisfies the (4) constraint because it allows
to obtain approximative answers by using of Cluster Feature
Vector (CFV). For the (2) constraint, it appears satisfied by
the fact that in function of stream’s characteristics (the space
dimension of values) and of the number of micro-clusters,
the structure update time at new event arrival can be bounded
: this allows to reduce the needs in term of computation
resources[13]. However, the CluStream algorithm does not
match with the definition of a generalist summary of data
stream over the (3) constraint because this algorithm doesn’t
allow to know the bounds for approximation of answers of
SELECT AND COUNT queries type and also eventually over
the (1) constraint (for the required memory-espace)[13].

3.2 Specific summary approach of data streams

Generalists data streams summaries studied in 3.1 constitute an ideal.
However, applications used in different domains can require a more
specific type of summary : i.e. a data stream summary specialized in
a well precise domain. Thus, in the literature we find different sum-
mary techniques usable depending on needs. These mainly consiste
of probabilistics techniques or data mining (sketchs, echantilloning,
clustering, etc.) [16]–[24] where the summary has a probability to
be selected (if these techniques are applied many times on the same
dataset, the result (a summary) may vary) and the deterministics or
statistics techniques [25]–[27](histograms, wavelets, etc.) which
when applied on the same dataset will always give the same result
(identical summaries).

3.2.1 Probabilistics or data mining techniques

From the point of view of the results they produce, data mining tech-
niques can be likened to summaries. Indeed, a lot of research has
been carried out to extract sequential patterns, or frequent items-sets
by using of sliding windows, etc., allowing to capture trends in data
streams.Thus, we can note techniques such as sketches, clustering,
sampling that we propose to study in this section.

The Sketches

In their seminal article, the [16] authors introduced the first time
the randomized sketching notion, which is since then, widely used.
These are small data structures and provide very compact data
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stream summaries by using few memory resources. This is a no-
table point in data stream field which is characterized by the memory
space constraint. The authors of [17] proposed the following for-
malism of a sketch :
a sketch S(A) is a compressed form of a given sequence A, providing
the operations :

• INIT(S(A)) which defines how the sketch is initialized;

• UPDATE(S(A),e) which describes how to modify a sketch
when a new event e arrives in the A sequence;

• UNION(S(A),S(B)) given two sketchs for two sequences A
and B, provides the sketch of their union A ∪ B

• SIZE(S(A)) which estimates the distinct number of events of
the sequence A.

Their use makes it possible to respond to queries over all of the data
stream by providing approximative answers. The main idea of this
technique is to randomly project each event in a particular space
using hash function and keep only the most relevant components,
thus saving space while preserving most of the information. There
are different implementations of these sketchs notably [20], Count
sketches [21], the Bloom’s filter [22], [23], Count-Min sketch (CM
Sketch)[24], etc.

The sampling methods

The sampling techniques [18], [28]–[30] are also other probabilis-
tics summary methods. The sampling over data streams is based on
traditionals sampling techniques. Howerver, it requires significants
innovations, like sequential sampling, to prevent the unbounded size
of data streams because generally requiring all the data in order to
select a representative sample. The sampling techniques can also
be coupled with windowing techniques in order to prevent the data
expiration phenomenon of the stream by allowing to consider an
interval in which to define the sample. These windows can be of two
types : sliding or landmark. Thus, certains of these mains methods
have been adaptated to data stream context. Within these last, we
can cite the Ramdom sampling [28] or the Reservoir sampling[28]
[18]. The Random sampling [28] uses a little sample to capture the
essentials characteristics of a dataset. This can be in the simplest
form of a summary to implement and others samples can be con-
structed from this one. This method seems to be inadapted when we
process data streams with a certain complexity for example health
data characterizied by a certain number of variables. Concerning
the Reservoir sampling [18], [28] the basic idea is to select a sample
size ≥ n, from which a ramdom sample of size n can be generated.
However, this method has some disadvantages such as the size of
the reservoir which can be very large. This can turn this procedure
costly. Furthermore, this method is useful for an insertion or an up-
date but find its limits at data expiration in a sliding window. Thus,
it must be implemented actualization algorithms of the sample with-
out affecting the representativity. Indeed, in this type of window,
the events no longer part of the current window become exceeded,
and if they belong to the sample, they must be replaced. In that
sens, many technics have been developed known as sliding windows
sampling for processing the case of sliding windows which, for

remember, can be logical (defined over a time period) or physical
(based on the number of the events) [29], [30].

• For the logical windows, we find the periodic sampling [29]
which consists to maintain a reservoir sample type for the K
first events of the data stream constituting the first window.
Then, when an event expires, it is replaced by the new arriving
event.
This procedure thus maintains an uniform random sample for
the first sliding window of size L and do not demand much
memory (K events each moment into the memory). However,
this method has the drawback to be highly periodic. It is that
the reservoir sampling searches to resolve by adding all new
arrived events in the system to a backing sample by affecting
to it a given probability (2.θ.K log(L))/L. Then it generates a
random sample from this one. When an event expires, it is im-
mediately deleted from the reservoir. However, this method
does not determine the index of the event which must replace
the event to erase. It is the same principle of operation that
the chain sampling follows by with a 1/min(i, L) probability
where L represents the window size. These different methods
requiring a piori knowledge of the number of events cannot
be applied to the case of the physical windows. Indeed, these
consist of a number of events that vary over time that cannot
be guessed a priori. In addition, several window events can
vary at the same time (for example when sliding the window).
To work around this problem, there are sampling methods
based on physical windows.

• Among the sampling methods using physical windows [28]–
[30], we find the sampling by priority which assigns to each
event i a priority pi between 0 and 1 and a replacer chain.
What distinguish it from the on-chain sampling. The events
in the sample are chosen by considering only those with a
higher priority and with a more recent timestamp. We also
find the Random pairing sampling [30] which allows to main-
tain an uniform sample over a sliding window combining
Vitter’s sampling algorithm [28] and whose of Babcock [29].
The algorithm can process any structure S c that tolerates
insertions and deletions but with a size that is always fixed.

As another sampling method, we have the join sampling [31], [32]
which attempts to connect distributed data streams, for example,
from meteorological measurement sensors from several stations.
This method has the advantage of drawing each event in the sample
in a single pass. However, its use requires having all the frequencies
of the join key in the second relation. A last class of the probabilis-
tic methods is the clustering techniques set [33]. The clustering
problematic have been widely studied in Databases, Data mining
and statistics. Indeed, the clustering is widely used by many ap-
plications in different domains. However, many of these methods
cannot be applied to data stream management because they must
be adapted to the data streams volumetry and to the computation
power of the systems, in short, to all constraints generally required
by the data streams. Furthermore, these methods must operate in
one pass instead of many like in classical systems. Thus, viewed the
important number of applications appearing in data streams, other
researches have been done in the goal to provide new propositions
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responding to the need of using clustering. This is how the authors
of [33] present a distributed version of the clustering algorithm
based on the density that they call DbScan [18]. We also find Den-
Stream, StreamKM++ [34], etc. The particularity of these different
algorithms is that they divide the clustering process in two major
steps, to know, the on-line phase in which data are summarized into
micro-clusters by conserving the data’s temporal information (times-
tamp) and the off-line phase which uses the summaries also called
quantifications of the first step to compute the final clusters. In the
objective to evaluate these different algorithms, three measures are
generally used [18] :

• The Accuracy that measures the clusters purity generated by
the studied or provided algorithm with clusters having the
labels that are of the dataset.

• The Normalized Mutual Information (NMI) that provides
an independant measure of the number of clusters. It takes
the maximal value of 1 only when two sets of labels have a
perfect two-to-two match.

• The Rand Index that measures the accuracy which is used by
a cluster to be able to classify the data elements by comparing
the labels of underlying classes.

3.2.2 Deterministic or statistic techniques of summaries

A data stream can be defined by data of different nature i.e. qualita-
tive or quantitative. In the latter case, we find numerical data streams
which can be likened to time series whose size is unbounded. In
other words, they are streams having a constantly evolving size and
whose values are taken in the space of real numbers. As example,
we have the phones calls, meteorological data from sensors, etc.
Immediately, it is necessary to apply the methods of signal theory
to them to summarize such data [35]. Among these efficient and
robust mathematical tools, we find histograms [25], [26], wavelet
compression, Fourier transformations, discrete cosine transforms,
curve segmentation, etc.[27], [36], [37].

The Histograms

Histograms are commonly used in data summaries structures to
succinctly capture the distribution of the values (discrete or con-
tinuous) in a dataset (a column or a tuple of a table). They have
been used for a multitude of tasks such as estimating query sizes,
queries responses approximation, as well as in data mining. Fur-
thermore, they can be used in order to summarize data which come
from streams. The literature offers different types of histograms
like Histogrammes V-optimal [11], [12], Equi-Width Histograms,
End-Biased Histograms)[25], [26] or Compressed histogram [27].

The comparaison by wavelets

The wavelet transform, like the Fourier transform, is a mathemat-
ical tool for capturing the evolution of digital functions (signal
processing). They are often used as techniques to provide a rough
representation of data, the [38], [39] data cube approximation, etc.
In the context of data streams, the constraints known as the large

volume and the often high rate with which events occur in the stream
still apply to wavelets taken as a data processing algorithm. And for
their use in this field, it becomes necessary to design techniques for
processing wavelets in data streams. With this in mind, the authors
of [40] show how to dynamically maintain the best wavelet coeffi-
cients efficiently as the underlying stream data is updated. While
in [41], the authors propose a technique to get closer to the best
dyadic (bipolar) interval which best reduces the error. This gave
birth to a light algorithm to find the best wavelet representation
denoted B-term Haar. It is for this reason that the Haar wavelet
representation method relies on constant-valued dyadic intervals. In
[12], the authors attempt to construct and update an optimal wavelet
summary by considering time series modeling where new events are
inserted at the end of the series (stream from a sensor of temperature
measured at each instant). And since only the coefficients belonging
to the path from the root to the new elements will be changed, most
of the wavelet coefficients will not be affected by the insertion of
new events. This implies a very simple construction of an algorithm
with B coefficients by the use of a metric L2. (Maintain the high-
est B coefficients in terms of absolute normalized values among
the finalized values, as well as the updated coefficients ( log(N)
coefficients, N initial size of the series). These are then compared
with the B coefficients to construct a new subset of coefficients
of high values and the turnstile modeling where the elements of
the stream update the data of the series (distributed sensor streams
accumulating their measurements before sending them to a central
server) allow a more general wavelet decomposition insofar as all
the coefficients can be affected by the arrival of a new event because
this can be linked to any event already present in the series. Which
makes difficult to maintain the coefficients and therefore to build
the summary. Others authors like in [42], use a sketch in order to
maintain, according to probabilities, an incremental summary of the
data stream which will then be used as a basis for calculate the B
coefficients. Those of [43], do not decompose the sketch in wavelets
but directly construct their sketch by mean of the data of the stream
decomposed in wavelets, afterward the obtained sketch is updated
by incremental way. Their algorithm est thus applicable to many
areas and is usable for to extend multidimensionnal data streams.
In this section, we have seen that with the growth of applications
producing massive, fast and varied data streams, computer systems
are subject to very great storage and processing constraints [12].
These data can be structured, semi-structured or unstructured and
their type can be either qualitative or quantitative. Thus, the need
arose to have structures called summaries to store and query the
pruned data of the system. These summaries can be generic in order
to respond to any kind of query or specific to respond to specific
queries only. Different methods such as probabilities, statistics, etc.,
allow these summaries to be made. Thus, the choice of a summary
technique is often guided by the field one wishes to study. How-
ever, their excessive memory resource requirements and processing
time due to their complexity mean that these techniques do not
appear to be the best solution to adopt for the construction of data
stream summaries in a large scale context. Furthermore, their use
does not always make it possible to have sufficiently representative
summaries which can help decision-makers to always be as well
informed as possible. These constraints are however nowadays more
and more well apprehended by Big data tools.
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4 Big Data tools for data streams sum-
maries

As discussed in the previous sections, many applications in different
fields such as social networks, or IoT, produce huge amounts of
varied data in a rapid way; we are talking about Big Data [1]–[3].
”Big Data” represents large volumes or streams of data that can be
structured, semi-structured or unstructured. These data streams are
generated quickly so that traditional databases systems do not have
sufficient processing and storage resources to support them. This
is why new tools adapted to this context have emerged. Generally,
these techniques provide high performance, fault tolerance and can
operate on distributed architecture systems. For each well-defined
stage of the data stream processing cycle, several technologies are
available.

4.1 Data streams processing architecture

Each big data solution acts in a well-defined phase of the big data
stream processing cycle [44]–[46]. These phases range from the col-
lection or ingestion of data streams to the analysis of these streams,
including the data processing and storage management. These dif-
ferent phases define a multi-layer architecture with those of the
highest level strongly dependent on the low level layers. In general,
we have 4 main types of architectures (figure 1 ) for processing Big
Data data flows having the following layers :

• Data retrieval layer which takes care off the collection and
transfer of data streams to the processing layer;

• Data processing layer which is responsible for performing
processing operations on the streams and preparing them to
be summarized;

• Data storage layer which stores summaries from generated
data streams;

• Data analysis layer in which the visualization of data is de-
fined for analysis and decision-making.

Each of these different layers has its own characteristics and involves
its own tools.

4.2 Data streams collect and ingestion

The ingestion [47] step is the entry point for the entire data process-
ing system. Indeed, this step links all data streams sources such as
the electricity consumption collected in real time from all meters of
the network structures (substations, transformers, feeders, etc.) [2]
to the storage layer. These streams are collected and then injected
into the system by various tools which operate in producer/consumer
approach. Given the large amount of data collected, this phase will
have to eliminate some unnecessary data through filtering. All this,
taking into account significant information such as outliers [48]
which may reflect anomalies or matters useful for decision-making.
It is also in this step that we have to ensure the generation of meta-
data on the structure and origin of the data, but also on the details
of the collection. These will be of capital importance for the rest of
the phases, more particularly, the data analysis.

In this step can intervene tools such as Kafka [49], Flume [50]
or even Nifi [51], etc.

Figure 1: Data Stream processing architecture layers

• Kafka is a distributed messaging system that collects and
delivers large volumes of data with low latency [49]. Kafka’s
architecture is essentially made up of three parts, namely a
producer which collects data from different sources then in-
jects them into a ”topic”. The topic describes the events of
the data stream and has a queue structure. These queues are
managed by brokers who are simple systems responsible for
maintaining published data. Each broker can have zero or
more partitions per topic. If a topic admits N partitions and N
brokers, each broker will have a single partition. If the num-
ber of brokers is greater than the number of partitions, some
will not have any partition from this topic. The third element
in the Kafka architecture is the consumer which retrieves the
elements of the topic then injects them into a processing layer
upstream. Producer and consumer can be written in differ-
ent languages like Java, Python or Scala etc. There are also
producers already defined (owners) such as in Azure [52],
CDC (Change Data Capture) techniques [53] which make it
possible to detect changes (insert, update, etc.) on the rela-
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Table 1: Big Data streams processing main architectures

Technology Principle Advantages Incovenients Usage
Traditionnal
Big data
architecture

• Positionned to solve the prob-
lems of traditional BI
• It can be seen that it still re-
tains the ETL action and en-
ters the data storage through the
ETL action.

• Simple and easy to imple-
ment as per BI system con-
cerns
• The basic methodology
has not changed.
• The only change is the
selection of technology, re-
placing the BI components
with the big data architec-
ture.

• For big data, there is no
such complete cube archi-
tecture under BI.
• At the same time, the
architecture is still mainly
batch processing and lacks
real-time support.

• Data analysis needs are
still dominated by BI sce-
narios
• But due to issues such
as data volume and perfor-
mance, they cannot meet
daily use.

Data stream-
ing architec-
ture

• The batch processing is di-
rectly removed
• And the data is processed in
the form of streams throughout
the entire process.
• The ETL is replaced with a
data channel.
• The data processed by stream
processing is directly pushed to
consumers in the form of mes-
sages.
• Although there is a storage
part, the storage is more stored
in the form of windows, so the
storage does not occur in the
data lake, but in the peripheral
system.

• There is no bloated ETL
process,
• The effectiveness of the
data is very high

• For streaming architec-
ture, there is no batch pro-
cessing, so data replay and
historical statistics cannot
be well supported.
• For offline analysis, only
analysis within the window
is supported.

• One can use this as an
early warning
• The different monitoring
aspects, and the data valid-
ity period requirements.

Lambda ar-
chitecture

• Lambda’s data channel is di-
vided into two branches real-
time streaming and offline.
• Real-time streaming basically
depends on much of the stream-
ing architecture to ensure its
real-time performance
•While offline is mainly batch
processing to ensure final con-
sistency.

• Both real-time and offline,
covering the data analysis
scenarios very well.

• Although the offline layer
and the real-time stream
face different scenarios
• Their internal processing
logic is the same, so there
are a lot of honors and du-
plicate modules.

• There are both real-time
and offline requirements.

Kappa archi-
tecture

• The Kappa architecture is op-
timized on the basis of Lambda
• Combining the real-time and
streaming parts
• And replacing the data chan-
nel with a message queue.

• The Kappa architecture
solves the redundant part of
the Lambda architecture.
• It is designed with an ex-
traordinary idea of replay-
ing data.
• The entire architecture is
very simple.

•Although the Kappa archi-
tecture looks concise
• It is relatively difficult to
implement, especially for
the data replay part.

• It provides features like
Lambda architecture.

tional databases like Debezium [54] in the NoSQL, the Neo4j
Stream connector which links Kafka to the graph-oriented
database Neo4j [55]. In addition, in order to be able to query
the data of the stream passing through the topic, Kafka now
has the KSQL language [56] which is an SQL-like language
for streaming. The kafka project is now supported by the
Apache foundation.

• Flume is a collecting, aggregating and transferring framework
of large volumes of data in HDFS (Hadoop Distributed File
System) [50] file systems such as Hadoop, HBase or Spark
[47]. In addition to the Hadoop ecosystem, Flume also allows
the injection of data stream from social networks such as twit-
ter, facebook, etc. Like kafka, Flume’s architecture consists
mainly of three parts, namely the source, the chain and the
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sink. The source retrieves the data streams to put them in the
chain or channel. The Flume sink component ensures that
the data in the chain has been transmitted to the destination
which can be HBase, Hadoop, etc. In this architecture, the
source, the chain and the sink are together called Agents. The
figure 3 describes this architecture.

Figure 2: Kafka Architecture

Figure 3: Flume Architecture

Figure 4: Nifi Architecture

• Nifi [51] is a data ingestion technology that uses data stream
oriented processing. It enables data acquisition, basic event
processing and a data distribution mechanism. NiFi provides
organizations with a distributed platform for building [57]
enterprise workflows. It provides the ability to accommodate
various data streams generated by IoT. NiFi enables seamless
connections to databases, big data clusters, event (message)
queues and devices. It incorporates tools for visual command,
control, provenance (lineage or data traceability), prioritiza-
tion, buffering (back pressure), latency, throughput, security,

scalability and extensibility [58]. NiFi is highly configurable
and provides a scalable and robust solution to process and in-
tegrate data streams of various formats from different sources
on a cluster of machines. It allows to manipulate data of
network failure, bad data, security, etc. MiNiFi2 [59], [47], a
sub-project of Apache NiFi is a complementary approach to
NiFi fundamentals in data stream management, focusing on
data collection at the source of their creation.

These different tools can be used separately but are not universal.
In that way and according to the needs or scenarios, we can combine
them. Thus Flume or Nifi can be used as a producer or consumer
of Kafka. The combination of Flume and Kafka allows Kafka to
avoid custom coding and take advantage of Flume’s sources and
strings, while Flume events passing through Kafka’s topic are stored
and replicated between Kafka’s brokers for more resilience [60].
The combination of tools might seem unnecessary, as it seems to
introduce some overlap in functionality. For example, NiFi and
Kafka provide brokers to connect producers and consumers. How-
ever, they do it differently: in NiFi, most of the data stream logic
does not reside inside the producer / consumer, but in the broker;
which allows centralized control [60]. NiFi was designed primarily
for data stream management. With the two tools combined, NiFi
can take advantage of Kafka’s reliable storage of stream data, while
overcoming some Kafka [60] limitations such as lack of monitoring
tools, reduced performance when a message has need to be touched
up.
Table 2 compares these different tools.

4.3 Data stream processing

This step is responsible for standardizing the formats unsuitable
for analyzing the data collected and extracting relevant informa-
tion. It is also responsible for eliminating potentially erroneous data.
Indeed, the [61] veracity criterion of Big Data requires verifying
whether the data received is reliable and must therefore be verified
before analysis. This processing can be done in two ways, namely
stream processing or batch processing [44]–[46].

4.3.1 The batch processing

In the batch processing [62], [63], the data is collected and grouped
into blocks of a certain duration (minute, hour, etc.) then injected
into a processing system. For example, processing all measure-
ments taken by the sensors after 10 minutes [64]. So, rather than
processing data streams as streams, current configurations ignore
the continuous and timely nature of data production. Data collection
tools, workflow managers and planners orchestrate batch creation
and processing [47]. This constitutes a continuous line of data pro-
cessing [46]. Batch processing is best suited when the data streams
are received offline (the data source only delivers its information
every 30 minutes for example) and when it is more important to pro-
cess large volumes of data to obtain more detailed information than
to get quick scan results. For batch processing, there are different
distributed platforms that provide scalable processing on clusters.
Among these tools we find :

www.astesj.com 421

http://www.astesj.com


J.G. Sarr et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 414-430 (2021)

Table 2: Kaka, Flume, Nifi comparison

Ingestion tool Out-of-the-box Limites Uses cases
Flume • Configuration-based

• Sources, channels & sinks
• Interceptors

• Data loss scenarios when
not using Kafka channel
• Data size (KB)
• No data replication

• Collecting
• Aggregating and mov-
ing high volume streaming
events into hadoop

Kafka • Back-pressure
• Reliable stream data storage
• Kafka stream
• Sources/skins with Kafa con-
nect

• Custom coding often
need
• Data size (KB)
• Fixed proto-
col/format/schema

• Streaming
•Messaging
• Systems integration
• Commit log

Nifi • Configuration-based UI
•Many drag & drop processors
• Back-pressure
• Prioritized queuing
• Data provenance
• Flow template

•Not for CEP or windowed
computations
• No data replication

• Dataflow management
with visual control
• Data routing between dis-
parate systems
• Arbitrary data size

• Apache Hadoop [65] which is one of the most popular batch
processing frameworks. Hadoop uses a master / slave archi-
tecture. The master is named namenode and is responsible for
keeping the metadata on the cluster and distributes the data on
the slaves. These are called datanodes and are used for stor-
age in HDFS (its distributed file system). The namenode can
also have a copy called secondary namenode which allows the
cluster to be maintained in the event of the first on falling and
thus becomes the main node [66]. By default, Hadoop stores
the data to be processed in its distributed file system (HDFS)
in CSV, Parquet or ORC format. However, it provides tools
to store data on external databases such as NoSQL HBase
or Cassandra databases. Hadoop uses the Map-Reduce [67]
programming model for parallel data processing.

• We can also use Apache Spark [62], [68] which is a data
processing framework that implements an execution engine
based on direct acyclic graphs (DAG) and divides the process-
ing into micro-batches. It also provides an SQL optimizer.
In order to maximize the performance of Big Data applica-
tions, Spark supports in-memory processing but also on-disk
processing when the data does not fit in memory. A Spark
application takes its data from a collection of sources (HDFS,
NoSQL, relational databases, etc.) or by interacting with data
ingestion tools like Kafka, then applies a set of processes to
them to generate interpretable results. For this, Spark uses
an architecture made up of: [69] i) Spark driver which is the
main node of a Spark cluster and which converts the process-
ing into a set of tasks and then transmits them to ii) Cluster
Manager which will carry them out on a set of iii) Executors
which will be responsible for executing them.

There are several customized distributed computing architectures
for batch processing [62]–[64]. However, they are not suitable for
stream processing because in the Map-Reduce paradigm, all input
data must be stored on a distributed file system (like HDFS) before
starting processing. However, with data streams, there always arises
the main storage constraint which means that this is not possible

with the unlimited size of the data streams; hence the need to have
streaming processing tools.

4.3.2 The stream processing

To process the data streams as they arrive in the system, it is nec-
essary to carry out ongoing processing on them in order to be able
to draw knowledge from them since their storage is not allowed by
available resources [62]. This stream processing is generally carried
out on clusters of distributed machines to allow to scale-up. This
provides a certain availability of processing resources (memory and
CPU). It is in this sense that recent Big Data platforms have been
born such as Apache Storm [70], Spark Streaming [71], Apache
Flink [64], Samza [72] which process continuous streams messages
on distributed resources with low latency and high throughput [44]–
[46].

• Apache Storm [70] is a stream processing framework devel-
oped by the company Backtype acquired by Twitter. The
main goal of Storm is the processing of data streams in a dis-
tributed way with fault tolerance. To achieve this, it provides
a framework for hosting applications and two approaches for
creating these applications. The first approach called ”clas-
sic” composes the application according to a directed acyclic
graph (DAC) called topology. The topmost part of this graph
takes input from sources like Kafka. These data sources are
called spouts. The latter therefore pass the data to processing
units called bolts which will be responsible for executing the
requests on the data streams. The second approach is a model
for building applications called Trident [73]. This is a high
level of abstraction at the top of the topology. This model is
more for familiar operations like aggregations and persistence.
It provides primitives intended for this type of processing. A
Trident therefore calculates a topology by combining and
splitting operations into appropriate collections of bolts.

• Spark [68] makes possible to process data which is frozen
at an instant T. Thanks with the Spark Streaming module,
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Table 3: Processing tools comparaison (1)

Storm Trident Samza Spark streaming Flink (streaming)
Strictest guarentee at-least-once exactly-once at-least-once exactly-once exactly-once
Achievable latency << 100 ms < 100 ms < 100 ms < 1second <100 ms
State Management Small state Small state YES YES YES
Processing model one-at-a-time mico-batch one-at-a-time mico-batch one-at-a-time

Back pressure YES YES No buffering YES YES
Ordering NO between batches within partitions between batches within partition
Elasticity YES YES NO YES YES

it is possible to process data streams which arrive continu-
ously, and therefore to process this data as and when as they
arrive. Spark Streaming [71] is therefore an extension of
Spark for streaming processing. It provides fault tolerance
in real-time processing of data streams. The framework will
accumulate data for a certain period of time and then produce
a small RDD (Resilient Distributed Dataset). This RDD ac-
cumulation / production cycle will recur until the program
is terminated. We are talking here about micro-batches as
opposed to processing events one by one. Spark Streaming di-
vides the incoming stream into these micro-batches of specific
intervals and then returns a Dstream. The latter represents a
continuous stream of data ingested by a source like Kafka,
Flume, Twitter, etc. Dstreams are processed and then sent to
a file system, database, real-time dashboard, etc. With micro-
batch processing, Spark Streaming will add a delay between
the arrival of a message and its processing. This therefore
opposes it here to Apache Storm which offers real-time pro-
cessing of events and non-compliance with the constraint (1)
presented in section 3. This difference in processing, however,
allows Spark Streaming to offer a guarantee of exactly once
message processing under normal conditions (each message
is delivered once and only once to the program, without loss
of messages), and at least once in degraded conditions. (a
message can be delivered several times, but always without
losses). Storm in turn allows to adjust the guarantee level
but, to optimize performance, the at most once mode (each
message is delivered at most once but losses are possible)
must be used. Another advantage of Spark Streaming is its
API which is identical to the classic Spark API. It is thus
possible to manipulate data streams in the same way as we
manipulate frozen data.

• Apache Flink [64] follows a paradigm that embraces data
streams processing as a unified model of real-time analy-
sis, streaming data stream, and batch processing in a single
programming model and with a only execution engine. In
comparison with ingestion techniques like Kafka which allow
a quasi-arbitrary reproduction of data streams, the data stream
processing programs do not distinguish between the fact of
processing the latest events in real time (Storm), the con-
tinuous aggregation of data periodically in windows (Spark
Stream). Rather, they just start processing at different points
in the continuous data stream and maintain states during [64]
processing. While Flink on the other hand, through a highly

flexible windowing mechanism, can process both early and
approximate results, as well as delayed and precise results,
in the same operation, thus avoiding the need to combine
different systems for them for the two use cases [64]. The ar-
chitecture of a Flink cluster includes three types of processes:
the client, the Job Manager and at least one Task Manager.
The client takes the program code, transforms it into a data
stream graph and submits it to the Job Manager. This trans-
formation phase also examines the data types (schema) of the
data exchanged between operators and creates serializers and
other type/schema specific codes. The Job Manager coordi-
nates the distributed execution of the data stream. It tracks
the status and progress of each operator and each stream,
schedules new operators, and coordinates checkpoints and
recovery. In a high availability configuration, the Job Man-
ager maintains a minimal set of metadata at each checkpoint
to fault-tolerant storage, so that a standby Job Manager can
rebuild the checkpoint and recover the data stream execution
from there. The actual data processing takes place in the Task
Managers. A Task Manager executes one or more operators
that produce streams and report their status to the JobMan-
ager. Task Managers manage buffer memory pools to buffer
or materialize streams, and network connections to exchange
data streams between cluster operators. In comparison to
Spark, Flink incorporates i) an execution dataflow that lever-
ages pipelined execution of distributed batch and streamed
data flows, ii) native iterative processing, iii) sophisticated
windowing semantics.

• Samza [72] is another LinkedIn project in the real-time data
stream processing space. Become open source and added to
the incubator of the Apache family of projects, Samza is a
framework for real-time processing of data streams built on
top of the Apache YARN infrastructure as well used by Spark
or in Hadoop. Like Storm with Trident, Samza provides some
primitives for building common types of data streams process-
ing applications and for maintaining states within those same
applications. The Samza application is based on the Appli-
cation Manager which is used in order to manage the Samza
Task Runners which are hosted in containers called YARN
Containers. These Task Runners perform Stream Tasks which
are the equivalent of Storm bolts for Samza. In other words,
they take care of doing the desired processing on the events
of the data stream such as the computation of aggregate func-
tions (sum, min, max, avg, count, etc.). All communications
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Table 4: Processing tools comparaison (2)

Technology Principle Advantages Incovenients Languages
Apache
Spark

• The Apache Spark Architec-
ture is founded on Resilient Dis-
tributed Datasets (RDDs).
• These are distributed im-
mutable tables of data, which
are split up and allocated to
workers.
• The worker executors imple-
ment the data.

• Apache Spark is a mature prod-
uct with a large community
• Proven in production for many
use cases
• And readily supports SQL query-
ing.

• Spark can be complex to set up
and implement
• It is not a true streaming engine
(it performs very fast batch pro-
cessing)
• Limited language support
• Latency of a few seconds, which
eliminates some real-time analyt-
ics use cases

• Python
• Java
• Scala
• R
• SQL.

Apache
Storm

• The Apache Storm Architec-
ture is founded on spouts and
bolts.
• Spouts are origins of informa-
tion and transfer information to
one or more bolts.

• Probably the best technical solu-
tion for true real-time processing
• Use of micro-batches provides
flexibility in adapting the tool for
different use cases
• Very wide language support

• Does not guarantee ordering of
messages, may compromise relia-
bility
• Highly complex to implement

• Java

Apache
Samza

• Apache Samza uses the
Apache Kafka messaging sys-
tem, architecture, and guaran-
tees, to offer buffering, fault tol-
erance, and state storage.

•Offers replicated storage that pro-
vides reliable persistency with low
latency.
• Easy and inexpensive multi-
subscriber model
• Can eliminate backpressure, al-
lowing data to be persisted and pro-
cessed later

• Only supports JVM languages
• Does not support very low la-
tency
• Does not support exactly-once
semantics

• JVM lan-
guages

Apache
Flink

• Apache Flink is a stream
processing framework that also
handles batch tasks.
• Flink approaches batches as
data streams with finite bound-
aries.

• Stream-first approach offers low
latency, high throughput
• Real entry-by-entry processing
• Does not require manual opti-
mization and adjustment to data
it processes
• Dynamically analyzes and opti-
mizes tasks.

• Some scaling limitations
•A relatively new project with less
production deployments than other
frameworks

• Java
•Maven

from Samza are submitted to Kafka brokers. Similar to Data
nodes in a Hadoop Map-Reduce application, these brokers are
often co-located on the same machines hosting Samza’s con-
tainers. Samza therefore uses the topics or subjects of Kafka
and a natural partitioning to implement most of the grouping
modes found in data streams processing applications.

Both modes of processing have their advantages and disadvan-
tages. The major advantage of streaming processing is its lack of
complexity since it processes the data stream as it receives it. Also
in comparison in terms of processing time, the stream processing
has a lower latency time since the tuples are processed immediately
after their arrival. However, they often have a low output rate. In
addition, fault tolerance and load balancing are more expensive in
stream processing than in batch processing [74], [75].

In batch processing, splitting data streams into micro-batches
reduces [76] costs. Certain operations like state management are
the most difficult to implement because the system will then have
to consider the whole [77] batch. We can also note that the batch
processing can also be incorporated into a stream processing as
in Flink [64] or Apache Streaming [71], [78]. The choice of the

type of processing and the tools will be guided by the nature of the
application to be implemented. Thus, in the literature there are still
other technologies that we have not studied in this paper such as
[63], [79]–[84] for Stream processing. The figure 3 provides some
elements of comparison of these different tools. In general, they
meet the constraints given in section 3.

The table 4 is a comparison of these differents tools.

4.4 Summary or partial storage of data streams

In this layer, the processed data streams upstream are then integrated.
After this processing, they are likely to be aggregated according
to different temporal granularities. Then, they can be modeled ac-
cording to a more suitable format to build a data stream summary
which will be used for the partial storage of the stream and for its
analysis later. This layer involves solutions such as HBase, Hive
or even Cassandra for NoSQL databases management [44]–[46].
NoSQL databases are most often used to store Big Data [85], [86].
They are schema-free and allow the storage of many data formats
without prior structural declarations. They are grouped into four
categories according to the difference in implemented data models.
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Table 5: Storage tools comparaison

Technology Principle Advantages Inconvenients Usage
HBase • Distributed and scalable big

data store newline
• Strong consistency newline
• Built on top of Hadoop HDFS
newline
• CP on CAP

• Optimized for read
• Well suited for range based
scan
• Strict consistency
• Fast read and write with scal-
ability

• Classic transactional applica-
tions or even relational analyt-
ics
• Applications need full table
scan
• Data to be aggregated, rolled
up, analyzed cross rows

• Facebook mes-
sage.

Cassandra • High availability
• Incremental scalability
• Eventually consistent
• Trade-offs between consis-
tency and latency
•Minimal administration
• No SPF (Single point of fail-
ure) – all nodes are the same in
Cassandra
• AP on CAP

• Simple setup, maintenance
code
• Fast random read/write
• Flexible parsing/wide column
requirement
• No multiple secondary index
needed

• Secondary index
• Relational data
• Transactional operations
(Rollback, Commit)
• Primary & Financial record
• Stringent and authorization
needed on data
• Dynamic queries/searching
on column data
• Low latency

• Twitter
• Travel portal

Hive • Hive can help the SQL savvy
query data in various data stores
that integrate with Hadoop.
• Hive’s partitioning feature
limits the amount of data. Par-
titioning allows running a filter
query over data stored in sepa-
rate folders and only reads the
data which matches the query.

• It uses SQL.
• Fantastic Apache Spark and
Tez Integration.
• You can play with User De-
fined Functions (UDF).
• It has great ACID tables with
Hive 3+.
• You can query huge Hadoop
datasets.
• Plenty of integrations (e.g., BI
tools, Pig, Spark, HBase, etc.).
• Other Hive-based features
like Hive Mall can provide
some additional unique func-
tions.

• Very basic ACID functions
• High latency
• Hive isn’t the best at small
data queries (especially in large
volume)

• Hive should be
used for analytical
querying of data
collected over a pe-
riod—for instance,
to calculate trends
or website logs.

Thus, we distinguish between key-value oriented , column-oriented,
document-oriented and graph-oriented models. In the rest of this
section, we will introduce some NoSQL database management sys-
tems.

• Hbase [85] is a distributed, column-oriented database man-
agement system built on the Hadoop [65] HDFS file system
on which it constitutes a major component of the ecosystem
by providing real-time read / write access to HDFS files. The
architecture of HBase is made up of worker nodes in HBase
also called Region Servers. Each Region Server contains an
arbitrary number of regions. Each region is responsible for
storing rows from a specific table, based on an interval of
row keys. The actual contents of the lines are stored in HF
files on the underlying HDFS file system. An HBase master
node coordinates the Region Servers and assigns their row
key intervals. HBase provides fault tolerance for storing large
volumes of sparse data. It includes an environment allowing
compression, in-memory processing and filters on database
columns. HBase is used more and more in different systems

like facebook messaging system. It also provides an API in
Java [85]. When processing [66] data streams, HBase is used
to store the results or summaries obtained either in batch with
Spark or in Stream with Storm for analysis purposes. HBase
performs very well for real-time analysis of big data streams,
and is thus used by Facebook for message processing and
real-time analysis [46], [87].

• Hive [88] is a data warehouse structure for analyzing struc-
tured data stored in Hadoop. These data from the HDFS sys-
tem can be in CSV, Avro, Parquet or even ORC format. Hive
is most often used for the purpose of creating big data stream
summaries and making them easy to query by providing an
SQL like language called HQL or HiveQL. It also provides
ODBC drivers for accessing data by tools such as Power BI
Desktop etc. Hive supports [89] online scanning. The ar-
chitecture of Hive is composed of an interface with the user
(either in command line or in graphical mode), of a metastore
which is a database of metadata on the tables and databases
created in Hive, a Thrift Server allowing the operation of Hive
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and executing the queries, a Driver which manages the life
cycles of HiveQL queries during compilation, optimization
and execution, a Compiler which is invoked by the driver by
passing it the HQL request. The latter transcribes this into
a plan or a DAG of map-reduce jobs [67]. This plan is then
transmitted to the execution engine in topological order. Hive
uses Hadoop as the [90] runtime engine.

• Apache Cassandra [86] is a NoSQL database management
system that provides a distributed and decentralized storage
system for managing large volumes of data. It is column
oriented and provides scalability, fault tolerance and consis-
tency [91]. In Cassandra’s architecture, there is no master
node to manage all the nodes of the network like the HBase
namenode [87]. The distribution of the data on the different
nodes is done in an equivalent manner. Cassandra defines this
environment to guarantee more consistency of data as well
as for the availability of resources [92]. For its good writing
performance, Cassandra is increasingly used for processing
[87] data streams by different organizations like Facebook
and for IoT [86], etc.

These tools that we have just mentioned are not the only ones.
There are others like MongoDB [93] a document oriented database,
Neo4j [55] graph oriented from NoSQL technologies . The choice
of one or the other of these systems must be made according to the
needs of the application.

Also, as discussed in section 3, data streams summaries are ei-
ther generalist or specific in nature. This separation is also followed
by Big Data tools which can often be used in both summary type
cases. Thus there are some implementations such as the MongoDB
[93] database used in [94] in order to analyze the data streams col-
lected from sensors positioned on sick subjects allowing the doctor
to make the right diagnoses in order to administer the best treatments
and be more reactive in the event of attacks (respiratory, cardiac
or stroke, etc.) [95]–[97] leader in data-oriented graph which has
developed for its server a connector for Kafka and Confluent called
Neo4j Streams [98] allowing to integrate streaming events for the
analysis of financial frauds, knowledge graphs and a vision to all
levels of clients of the [99] system. There are also key-value ori-
ented NoSQL databases like Redis [100] coupled with Storm in
[101] and [102] to keep static data on clients who have visited a
website in order to be able to enrich the analyzes carried out on
the sections on which they had to click, we speak of clickstream as
well as in [103] for the analysis of Twitter data. Table 5 provides a
comparison of these different tools.

4.5 Data stream visualization and analysis

In order to facilitate decision making from data streams, they must
be described according to a certain number of representation models
such as tables, graphs, curves, etc. And these different visuals when
put together, make it possible to build dashboards. In this sense,
this phase of data analysis is one in which we can detect intrinsic
patterns, extract relationships and knowledge, but also correct errors
and eliminate ambiguities. It then makes it possible to be able to
interpret the data streams more easily. This is because decision-
makers must interpret the results of an analysis of data stream. This

is necessary in order to rule out errors. SAP Hana [104], Power BI
[105] Saiku [106] are different tools for carrying out this analysis.
Table 6 provides a comparison of these different tools.

• Saiku [106] offers a user-friendly web analytics solution that
allows users to quickly and easily analyze their data and cre-
ate or share reports. Saiku connects a wide range of OLAP
servers including Mondrian, Microsoft Analysis Services,
SAP BW and Oracle Hyperion and can be deployed quickly
and inexpensively to allow users to explore data in real time.

• SAP Hana [104] is a column-oriented and in-memory rela-
tional database management system and has a database server
to store and retrieve data requested by applications in real
time. In addition, SAP Hana performs advanced real-time
analysis of big data streams (prescriptive and predictive anal-
ysis, sentiment analysis, spatial data processing, continuous
analysis, text analysis, social network analysis, text search,
processing. graphics data) and contains ETL capabilities as
well as a real-time application server [107].
• Power BI [105] is a self-service Business Intelligence solution

produced by Microsoft. It provides business user-oriented
data visualization and analysis capabilities to upgrade the
decision-making process and business visions. Power BI is a
cloud-based, self-service BI solution. This means that we can
build and deploy a solution immediately with data from cloud
and on-premises data sources, systems and functions. Power
BI is composed of two main parts namely a server installed
locally or at Microsoft to host the reports and a tool to create
and publish these [105] reports. It provides connectors to ac-
cess different data sources like Hive, etc. For example, when
a visualization (table, graph, etc.) in a dashboard is connected
to a real-time data source (Direct Query), the visualization up-
dates continuously, allowing faster information [105]. When
dealing with data arriving in real time, this ability to automati-
cally update reports offered by Power BI has a real advantage.
Thus, it allows decision-makers to be informed at all times
about the overall state of the subject studied.

As for the other phases of the architecture, there are a very large
number of tools in the literature for visualizing data streams such as
Splunk [44]–[46], [108].

5 Future works
It is possible to note that even if the works presented in this study
provide rather interesting results, they do not always make it pos-
sible to satisfy the requirements subject to data streams. Indeed, if
we consider data streams with several dimensions the requirements
of representativeness which means that a model must always re-
main faithful to the source data is not always guaranteed. Also the
requirement of compactness which makes it possible to guarantee
that the model will be able to hold in memory can be not assured.
The genericity prerequisite used in order to optimize the processing
and storage times and to respond to different types of requests can
also be not. The dynamicity criterion making it possible to take
into account new events that have arisen in the stream or even rapid
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Table 6: Visualization tools comparaison

Technology Principle Advantages Incovenients Usage
Saiku • A lightweight open-source an-

alytical tool which is written in
HTML/JavaScript (jQuery)
• Focuses on fast and config-
urable OLAP analysis.

• Undertake complex, pow-
erful analysis using an easy
to use, drag and drop inter-
face, via the browser
• Diverses data source. De-
ployement quickly with the
graphical
• User friendly Schema De-
signer for designing data
models.
• Creation consistent and
re-usable meta data
• RESTful web-services
provider with JSON data
payload.

• Pricing : to take advan-
tage of all the features of
Saiku Enterprise every user
requires a licence

• Add reporting and anal-
ysis to any application or
website
• Explore data in Mon-
goDB, Spark and more, di-
rectly from the browser.
• Caching to address perfor-
mance and speed up analy-
sis.

Power BI • Power BI is a cloud-based
business analysis and intelli-
gence service by Microsoft.
• It is a collection of business in-
telligence and data visualization
tools such as software services,
apps and data connectors.

• Cost-effective
• Custom visualization
• High data connectivity
• Regular updates
• Integration with Excel
• Attractive visualizations

• Crowed user interface
• Difficult to understand
• Rigid formulas (DAX)

• Real-time analysis
• custom visualizations
• Quick Insights

SAP HANA SAP HANA is a tool, which
comprises:
• An in-memory HANA
database
• Data modeling tools
• Data provisioning
• And HANA administration,
making it a suite.

• Provides real-time analy-
sis and decision-making ca-
pability.
• It enables processing of
large amounts of data while
the business is going on.
Thus, it provides instant
real-time insights.

• SAP HANA is only com-
patible to and thus will
run only on SAP or SUSE
Linux certified hardware.
• Limited hardware com-
patibility makes wanting to
use SAP HANA a costly in-
vestment.

• Core process accelerators
• Planning, Optimization
applications
• Sense and response ap-
plications i.e. SAP HANA
works as a digital core for
an Internet of things (IOT).

updating in order to be able to provide responses quickly and not
constitute a bottleneck or a blocking factor for the stream can also
be not guaranteed. All of these factors would increase processing
times and the difficulty to storage some data for the aim of analysis.

Thus, to overcome these various concerns, we will soon be
proposing a generic data stream summary model based on Big Data
technologies as well. This model should make it possible to col-
lect, transform, store, process and present data streams. It would
be defined by different storage structures in cascade where each
level of the cascade would correspond to a time granularity that
would define when new measures would be calculated. For data
collection, we would use technologies as Apache Kafka combined
with some technics like random functions to produce stream. Form
the streams processing, we would aim to use streaming technolo-
gies like Apache Storm and for the storage, we would use NoSQL
technologies as Apache HBase. This model would be based over
Titled Time Windows to manage the space and time dimensions.

6 Conclusion
With the advent of intensive applications which produce huge vol-
umes of data like fraud detection, roads traffic monitoring, the

management of smart electricity meters, etc. it becomes necessary
for companies, science, finance, medicine, etc. to be able to anal-
yses and use the results obtained by the mean of this Big data for
decisions making. However, processing of these data streams is
often confronted to storage and computation constraints caused by
the fact that they are generated in swift and continuous manner with
variables velocities. In this paper, our main goals were to study and
evaluate classical techniques and Big data tools used to generate
data stream summaries, the architectures defined and tools that can
be used and in what layer of these architectures for to answer user’s
queries. Thus we have drawn up a state of the art on data streams
summaries. Classical methods of stream data summary have many
benefits but their implementation entails constraints which are the
limits of storage and processing capacities available in traditional
systems which that Big data tools can deal with. Indeed, with Big
Data solutions, new possibilities are opening up to better understand
these limits. In this sense, we have presented different architectures
for the processing of data stream of a Big Data nature which in-
volves in each of their layers a certain number of tools (Section
4). These architectures have thus been implemented by various
approaches combining Big Data technologies with those of NoSQL
in order to overcome the problem of processing and storage relating
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to data stream. These different proposals are most often distributed
over clusters.
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