

www.astesj.com 348

Neural Network for 2D Range Scanner Navigation System

Giuseppe Spampinato*, Arcangelo Ranieri Bruna, Ivana Guarneri, Davide Giacalone

STMicroelectronics, System, Research and Application, Catania, 95100, Italy

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 02 July, 2021
Accepted: 06 October, 2021
Online: 23 October, 2021

 Navigation of a moving object (drone, vehicle, robot, and so on) and related localization in
unknown scenes is nowadays a challenging subject to be addressed. Typically, different
source devices, such as image sensor, Inertial Measurement Unit (IMU), Time of Flight
(TOF), or a combination of them can be used to reach this goal. Recently, due to increasing
accuracy and decreasing cost, the usage of 2D laser range scanners has growth in this
subject. Inside a complete navigation scheme, using a 2D laser range scanner, the proposed
paper considers alternative ways to estimate the core localization step with the usage of
deep learning. We propose a simple but accurate neural network, using less than one
hundred thousand overall parameters and reaching good precision performance in terms
of Mean Absolute Error (MAE): one centimeter in translation and one degree in rotation.
Moreover, the inference time of the neural network is quite fast, processing eight thousand
scan pairs per second on Titan X (Pascal) GPU produced by Nvidia. For these reasons, the
system is suitable for real-time processing and it is an interesting complement and/or
integration for traditional localization methods.

Keywords:
Navigation
Localization
Laser Scans
Dataset Generation
Neural Network

1. Introduction

This paper is an extension of the work originally presented in
ICARA [1]. Further investigations to increase performance of the
approach are done changing deep learning parameters, moreover
problem simplification and data augmentation have been tested.

The field of the proposed paper is navigation system and
related localization, which is still considered a challenging task [2].
The core function of these kind of systems is for sure the
localization itself. Main goal of this vital function is the correct
estimation of the step-by-step position of the moving robot in
unknown scenes. To perform this task different data sensors can
be used. Moreover, to reach better estimation usually previous step
data are stored inside an updating map.

About localization approaches proposed in literature, two main
localization groups can be recognized: vision-based and laser-
based.

Vision-based localization techniques just use images to
achieve their goal. Usually, features inside previous and current
image are calculated and matched to retrieve the global
displacement. In literature, different vision-based techniques have
been proposed: effective prioritized matching [3], ORB-SLAM
[4], monocular semi-direct visual odometry (SVO) [5], camera
pose voting [6], localization based on probabilistic feature map [7],

etc. More sophisticated solutions, like multi-resolution image
pyramid methods, have been proposed to reach more robust feature
matching [8]. These approaches are usually robust, but they do not
have useful distance information, i.e., it is difficult to map the
estimated trajectory (in pixel) in the real world (in cm).

On the other hand, laser-based localization techniques just use
laser scans to achieve their goal. A features matching approach, as
in vision-based localization, is not simple to be implemented. This
is mainly due to the poor information of laser scans compared to
images. In fact, in the case of image details (e.g., corners), we can
note only weak variations in range measurements and then a lack
of distinctive features to be analyzed [9].

Usually, Bayesian filtering are largely used in laser-based
techniques to consider the robot position as a problem of
probability distribution estimation based on grid maps [10,11].
Apart Bayesian filtering, in literature other laser-based proposed
techniques are: iterative closest point (ICP) [12] and related
variants [13], which minimize the matching error between two
point-clouds estimating the related transformation, perimeter
based polar scan matching (PB PSM), Lidar odometry and
mapping (LOAM) [15], which achieves real time processing by
running in parallel two different algorithms, and so on. Even if
these approaches usually achieve precise localization, since
distance information is available, they can fail in scene changing
conditions. In fact, when an object is moving in the scene, due to

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Giuseppe Spampinato, giuseppe.spampinato@st.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060539

http://www.astesj.com/
mailto:giuseppe.spampinato@st.com
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060539

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 349

the occlusions, we can have lack of information in the moving
object area and then the estimated localization can be wrong.

Recently, in vision-based localization, to extract and match
image features, deep learning approaches have been successfully
used. These promising approaches allow to estimate camera
position. A lot of deep learning approaches have been proposed in
literature: PoseNet [16], which for pose regression task uses the
convolutional neural networks (CNNs), Deepvo [17], which for
the same task uses recurrent neural networks (RNNs), undeepVO
[18], which estimates the monocular camera pose using a deep
learning unsupervised method, and so on. Unfortunately, at
moment the deep learning-based methods do not achieve the same
pose estimation accuracy of classical vision-based localization
approaches.

Inspired by vision-based localization approaches based on
deep learning algorithms, few attempts of deep learning methods
have also been suggested for laser-based localization: in [19]
authors estimate odometry processing 3D laser scanner data with
a series of CNNs, in [20] authors trained for giving steering
commands a navigation model target-oriented, in [21] authors
performed loop closure and matching of consecutive scans making
use of a CNN network, in [22] authors improved the odometry
estimation considering also temporal features using a RNN, able
to model sequential long-term dependencies, and so on.

Regarding the deep learning laser-based localization, as
indicated in the case of vision-based localization, unfortunately
they still do not achieve the accuracy of the pose estimation
compared to classical laser-based localization. For this reason, in
literature some authors propose the integration of deep learning
approaches with the classical ones: in [23] the authors make use of
Inertial Measurement Unit (IMU) in combination with CNNs for
3D laser scanners for assisted odometry, in [24] the authors use the
result of vision-based localization approaches based on CNN as
starting seed for Monte Carlo localization algorithm, to speed-up
algorithm convergence, also increasing robustness and precision,
and so on.

It is easy to understand that the field of deep learning
localization, in particular about laser-based approaches, has not yet
been intensively explored and, at moment, it is still considered a
challenging process. In fact, just a small number of papers discuss
about this subject [22]. Our choise is to go further in this
investigation, to obtain a simple deep learning laser-based
localization, using only data taken by 2D laser scanners. Moreover,
we tried to reduce as far as possible the number of parameters used
by the proposed network, to deal with the low-cost resources
constraint.

Our contribution to the research in the field of navigation
system, using deep learning approaches, with only 2D laser scan
input is firstly the exploration of state of art algorithms. Another
contribution is to indicate a methodology to generate the ground
truth for the neural network without using real sensors but
simulating them with existing powerful navigation tools.

Novelties of the proposed system are in both neural network
dataset generation and training. In particular, in data generation we
indicate a methodology to choose properly the angle resolution
trying to reduce the collisions per frame (to avoid loss of important
data) and to maximize array density (to avoid working with sparse
data). In this way, the neural network was more able to solve the
regression problem.

In the training phase, the novelty is the demonstration with real
tests that in regression problems the choice of input/output values
scale is vital to let the neural network working. In fact, after several
experiments, we obtained the correct scale measures for distances
and angles.

At last, the great contribution was to find, after lots of
experiments with various neural network hyper parameters, a
really light network to solve the localization problem with good
performances in terms of mean absolute error between estimated
positions and ground truth.

The proposed research is composed by the following Sections:
Section 2, where the proposed deep learning laser-based
localization is described; Section 3, where the experimental results
obtained are deeply described; Section 4, where final
considerations are remarked.

2. Proposed Approach

A typical navigation system is described in Figure 1. A starting
moving object position (x,y,α) is considered, where (x,y) are the
horizontal and vertical position in the cartesian axis and α is the
orientation angle. Usually, at the beginning the position is assumed
to be (0,0,0). Every time laser scan data is available (θ, d), where
θ is the angle and d is the distance from object in front of the laser
beam, the localization step will calculate the new position (x',y',α').
The system will then decide next movement. Depending on how it
is programmed the moving object (for example the robot), the
system can decide to continue moving (in the case an obstacle is
not found) or to stop motors (when an obstacle is found). The
correct command are then send to the motor control (which interact
with the IMU) to update the movement. Positions and movements
are updated each time.

Inside the navigation system, the proposed deep learning
approach is applied on the core localization step. From this point,
this article will focus only on the localization step and all the
research will be focused on this particular block of the navigation
system.

To reach this objective we used a wheeled robot equipped with
the laser scanner A2 RPLidar on the top. This rotating laser scanner
has twelve meters as maximum range, view at 360 degrees,
running up to fifteen Hz. Thanks to the robot, we acquired a custom
dataset in various environments (apartment, laboratory and office).

The ground truth generation schema used is shown in Figure 2.
At the beginning, the dataset acquisition is needed to record the
input Lidar dataset. Each scan is composed by multiple couples (d,
θ), where d is the distance from the object and θ is the related angle.
Once the dataset was obtained, we needed to generate the ground
truth position (x, y, α) for each sample taken. Since we do not have
the real position of the robot for each scan contained in the
acquired dataset, we needed a simulation environment to obtain a
ground truth.

For this purpose, we make usage of the MATLAB Navigation
Tool. The generated ground truth was tested using a simple
Mat2Map program to display the path of obtained positions (x, y,
α) for each sample taken and the map generated by Lidar scans. In
this way, we also checked the robustness of Navigation Tool. Even
if it is a very slow method, we tested it in different conditions and
we conclude to be very precise, so it was used as reference. It is
based on Google Cartographer [25], which builds multiple

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 350

submaps and try to align upcoming scans with previous nearby
submaps, generating the constrains on a graph.

Once we generated the custom dataset and related ground truth,
we perform our experiments using the TensorFlow framework
with Keras wrapper in a Python environment. In this configuration,
to obtain the best compromise between quality and complexity, we
tried different data binarization and augmentation with various
neural network configurations.

Figure 1: Navigation system.

Figure 2: Ground truth generation schema.

2.1. Dataset Generation

The main challenge in deep learning approaches is the
acquisition of large amounts of data, to allow the neural network
to work fine in any real scenario. Our generated dataset consists in
about 51,000 samples, which we tested to be enough in our
experiments for training the proposed neural network. Each sample
is composed by two subsequent scans acquired by Lidar. Each scan
is expressed by multiple couples (d, θ), that is the distance and the
angle from the nearest found object.

Data acquisition cannot be used as it is. We instead need to
encode acquired data into a panoramic like depth image, so we
need a sort of binarization of each scan before to be paired with the

following one. Data binarization is inspired by a previous work
[21] to encode laser scans into a 1D vector. To obtain a 1D vector,
in each scan, all distances are binned into angle bins, according to
the chosen angle resolution. In this way, we stored all depth values
inside a 1D vector, where all the possible depths are represented
(from 0° to 360°). As soon as two subsequent scans are binarized,
we can couple them to be used as neural network input.

Laser range scanners usually give (scan by scan) distances
from the identified nearest object for constant angles, so
binarization is simple, because we have a fixed number of possible
angles to be considered into the 1D vector. Instead, in the chosen
laser range scanner A2 RPLidar in each scan the angles can vary,
from 0° to 360°. For this reason, it is not possible to fix we the
angle resolution as in previous works, e.g., in [22] the authors use
0.10° and in [21] the authors use 0.25°, so a preliminary
investigation to find optimal angle resolution is needed. In this
research, we tried at the same time to maximize array density and
to minimize collisions per frame. Array density is for each scan the
number of non-zero value bins, while collisions per frame is the
total number of data ranges which are in the same bin.

Table 1 shows the impact of the chosen β (angle resolution) on
N (total number of bins) and then on mean collisions per frame and
mean array density. Since A2 RPLidar have got a 360 degrees
view, the laser data is separated into β degree bins, for a total
amount of N=360°/β° bins. Of course, increasing β (and then
decreasing the total number of N bins) the array density increases
and of course collisions per frame will become bigger. In our
experiments, we tried different angle resolutions β to make at the
end the proper decision about which configuration to use in the
proposed neural network.

As indicated in Table 1, particularly at higher angle resolutions
β, collision is an important aspect to solve to guarantee the neural
network to work property. In [22] authors chose to take the mean
of all distances are in the same bin, probably because in their
experiments the collision occurred rarely and distances at the same
degree was similar. In our experiments, we consider two main
aspects: laser range scanner is more precise for lower distances and
average of two different distances at the same degree can introduce
false objects distances. For these reasons, we choose to take the
minimum distance (instead of average distance) for distances
falling in the same degree.

Table 1: Dataset Binarization

β N
Collisions
per frame

Array
Density

0.10 3600 0.05 9%

0.25 1440 0.13 22%

0.50 720 0.48 46%

1.0 360 2.54 89%

2.2. Neural Network
The network we propose in this work, from a consecutive pair

of two scans (st-1,st) done by the chosen Lidar, obtains the robot
displacement between them, trying the estimation of their relative
pose transformation:

T = [Δx,Δy,Δα] (1)

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 351

where Δx and Δy are respectively the horizontal and vertical
translations and Δα is the rotation angle between the two scans (st-

1,st). We can only estimate the displacement of the robot in two
dimensions, since we choose to use just a two dimension sensor.

The final objective of the neural network is to learn the
unknown function g(), which, at time t, maps (st-1,st) to the pose
transformation T :

Tt = g(st-1,st) (2)

In the training step the unknown function g() is learned.
Moreover, thanks to the accumulation of the estimated local poses
from the starting of the process up to time t, we obtain the robot
global position at time t. The chosen loss functions are: mean
absolute error (MAE) and mean square error (MSE), which are
commonly used in deep learning regression problems.

The strategy we tried to implement here is to fit our regression
problem with standard deep learning 2D image matching
problems. The difference is that, in our case, instead of 2D images,
we have obtained (thanks to dataset binarization) 1D panoramic
depth images. In this way, as in the case of images, we can use
consecutive CNN to extract spatial features obtained by the sensor
in the tested conditions. After that, additional fully connected
layers (dense layers) allow to the neural network to understand
patterns within extracted spatial features to provide the matching
and then the current robot position estimation in the unknown
environment.

Figure 3: Proposed deep learning approach.

Table 2: Parameters of Neural Network

N NN Model NN Parameters

3600 CNN+LSTM 21,078,563

3600 CNN+Dense 5,343,779

1440 CNN+LSTM 15,835,683

1440 CNN+Dense 2,722,339

720 CNN+LSTM 14,262,819

720 CNN+Dense 1,935,907

360 CNN+LSTM 13,214,243

360 CNN+Dense 1,411,619

The proposed neural network is shown in Figure 3. The
suggested neural network has been inspired by the one indicated in
[22], but some differences should be evidenced. Firstly, we make
lots of trials to obtain a low complexity neural network, without to
lose in quality performance. Moreover, we used max pool layers
(instead of average pool layers) reducing complexity and
extracting only most important features spatially distributed.
Better results were obtained using max pooling, since as
aforementioned (see Table 1), the binarized laser scans tends to be
sparse, when the angle resolutions β tends to increase. For the same
reason, we also eliminate the stride parameter of the various neural
network convolutional filters, which can eliminate useful
information for sparse binarized laser scans. To maintain the same
dimension, instead of using stride parameter in the convolutional
filters, we used other max pooling before applying these filters.

As aforementioned, we experimented different neural network
configurations, in particular varying:

• β (angle resolution) and then N (number of bins), to define the
correct dimension of input data;

• last two network layers, trying both dense layers [21] and long
short term memory (LSTM) layers [22].

 The calculation of the NN parameters is shown in Table 2. This
number is impacted by N (number of bins) and by the neural
network model used. As indicated, when N is increased and when
LSTM layers are used, the total number of NN parameters and then
the time to be executed will increase too. It is to note that the
changes made compared to [22], that is max pool in replacement
of strides and average pool, do not impact the overall NN
parameters.

2.3. Training

For the sake of clearness, now we indicate in detail the input
and ground thru output of the proposed neural network. Input for
the network is composed by composed by a set of couples of
consecutive Lidar scans (θ, d). These scans are preprocessed
allowing to binarize them into sets of 2 X N matrixes, as indicated
in Section 2.1. In these matrixes, N depends on β (angle
resolution), like indicated in Table 1.

About the reference (ground thru) output of the proposed NN,
it is composed by a set of vectors T = [Δx,Δy,Δα], which are the
ground thru positions of the moving object, obtained by applying
Navigation Tool (MATLAB) to the input Lidar scans (θ, d).

The various experiments were performed in a Python
environment with the use of TensorFlow framework and Keras
wrapper. Moreover, a workstation was used for training execution,
that is a Xeon ES-2630 (Intel) octacore machine with 62 GB of
RAM and a Titan X (Pascal) GPU produced by Nvidia. The chosen
GPU has got 12 GB of RAM and it is equipped by 3584 CUDA
cores, to allow lots of parallelization in training step for faster
execution.

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 352

The details for training step are the following: 0.0001 function
cost minimization learning rate, 500 epochs for training the neural
network, 32 batch size and Adam training optimizer used. We
tried other kinds of training optimizers, but we did not notice any
significant difference in regression performances.

3. Experimental Results

Lots of tests have been executed with different neural network
configurations, as indicated in Table 2, and with different indoor
environments. As expected, it is important to note that classical
Convolutional Neural Networks (CNNs) work better in the case of
dense input datasets. For this reason, we used max pooling instead
of average pooling in final tests. For the same reason, even if, at
the beginning, we tried in our experiments all the different neural
network configurations, final research was focused on β (angle
resolution) set to one degree and then N (number of bins) set to
360. This choice also allows us to reduce the total neural network
parameters and the overall complexity.

Figures in this Section are representative of a particular testing
to underline how (depending on scaling applied) the neural
network tends to converge (generalizing the regression problem)
or not and to underline how the final suggested neural network fits
our needs (lightness and precision). In particular, in the X axis the
evolution of the network in various epochs (trials) is represented
and in the Y axis the loss in precision is represented (first trials in
mean square error, after we used mean absolute error). When train
and validation curves are similar with low loss the neural network
works properly, while when they are different a problem occurs.
In this Section we try to explain a particular reason (scale) of this
problem.

Table 3 shows the results obtained using input distances and
output positions expressed in millimeters. Results are really bad:
the proposed network seems to make a sufficient regression work
for training set, but for validation and test set it does not reach good
performance at all. In general, as expected, max pooling strategy
reaches better performance than average pooling and reducing the
angle resolution and then the N dimension of the input binarized
scans we obtain better loss values (MSE).

To better understand the evolution of this first experiment done
on the proposed neural network epoch by epoch, the first 150
epochs are displayed in Figure 4. This graph is referred to the case
N = 1440 with max pooling (train loss = 2.48 MSE; validation loss
= 216 MSE; test loss = 233 MSE), but similar considerations can
be done on the other different configurations. It is easy to note that
while the curve for train decreases, the curve for validation is flat,
so the proposed network, in this case, is not able to solve the
overexposed regression problem and to generalize it.

Table 3: Test Results (MSE) with Input Dataset (Millimeters)

N Model
Train
Loss

Validation
Loss

Test
Loss

3600 AvePool 2.78 250 258

3600 MaxPool 2.75 248 250

1440 AvePool 2.30 228 236

1440 MaxPool 2.48 216 233

720 AvePool 2.36 221 240

720 MaxPool 3.27 220 238

360 AvePool 7.54 220 235

360 MaxPool 7.02 218 230

Figure 4. Results obtained with input dataset (millimeter).

In the used approach, the main issue is the scale discrepancy in
the input variables (x and y expressed in millimeters and α
expressed in degree), which often increases the difficulty to
correctly model the neural network to solve the regression
problem. A common trick used in these cases is to pre-process the
input variables before they are fed to the neural network [26]. In
the same way, also the outputs of the network (d expressed in
millimeters and θ expressed in degree) should be processed to
obtain the correct output values.

A commonly used pre-processing step is just a simple linear
scaling of network variables [26], so we just changed the distance
measure passing from millimeter to centimeter and the related
results are shown in Table 4. As indicated, better results are
obtained compared to the first tentative with input distances and
output positions expressed in millimeters. Even if results are better,
we must again to note that they are not good enough: again, the
proposed network seems to make a sufficient regression work for
training set, but for validation and test set it does not reach similar
good performance. Moreover, as expected, max pooling strategy
reaches better performance than average pooling and reducing the
angle resolution and then the N dimension of the input binarized
scans we obtain better loss values (MSE).

Table 4: Test Results (MSE) with Input Dataset (Centimeters)

N Model
Train
Loss

Validation
Loss

Test
Loss

3600 AvePool 0.09 4.12 3.90

3600 MaxPool 0.03 3.98 3.83

1440 AvePool 0.28 3.97 3.77

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 353

1440 MaxPool 0.11 3.87 3.68

720 AvePool 0.18 3.86 3.76

720 MaxPool 0.13 3.84 3.67

360 AvePool 0.28 3.75 3.70

360 MaxPool 0.19 3.67 3.64

Figure 5. Results obtained with input dataset (centimeter).

To better understand the evolution of the second experiment
done on the proposed neural network epoch by epoch, the first 150
epochs are displayed in Figure 5. To allow a visual comparison
with Figure 4, also this graph is referred to the case N = 1440 with
max pooling (train loss = 0.13 MSE; validation loss = 3.84 MSE;
test loss = 3.683 MSE). Of course, similar considerations can be
done on the other different configurations. It is important to put
into evidence that MSE is not a linear measure, but quadratic. This
is the reason why the loss is drastically reduced in comparison with
the previous experiment. Moreover, the train curve correctly
decreases, as in previous case, while in the current test the
validation curve is not completely flat, but it starts to go down. As
first experiment, in the current test the proposed network cannot
model the neural network to generalize and correctly solve the
regression problem, but improvements noticed give us an
important hint to work with: to obtain the best regression results,
firstly we must find the correct rescaling to apply to input and
output data measures (distance and angle).

At this point, we make some rescaling experiments. To
maintain similar scale in both input dataset and output variables,
we tried to scale translation data by one thousand (in this way we
use meters, instead of millimeters as measure) and rotation data by
one hundred. This rescaling configuration gives us best results.
Furthermore, we decide to make use of Mean Absolute Error
(MAE), instead of Mean Squared Error (MSE). In this way, we
obtained similar loss curves, but with results simpler to understand
and comment, because MAE is a linear measure, while MSE is
quadratic. Figure 6 shows that good results are finally reached
(train loss: 0.011 MAE; validation loss: 0.011 MAE; test loss:
0.010 MAE), using the new scaling factors to be applied to input
and output data with a very simple configuration (only 1,411,619
network parameters). Like other experiments, the train curve
correctly decreases, but this time the validation curve also

decreases with similar slope. This indicates that finally we reached
our main goal: the neural network can now correctly generalize
and solve the proposed regression problem.

Figure 6: Results obtained with input dataset (meter) with 1,411,619 parameters

In our research, we tried to further reduce the parameters in the
proposed neural network for lighter solutions, to be implemented
in microcontrollers with low resources and in particular with
memory (RAM and FLASH). To reach this goal, we tried to reduce
the elements in the last two layers (dense layers). After several
trials, we realized that the results are still good also deleting last
two layers, obtaining a very low neural network parameters
(96,547). Figure 7 shows that in this experiment, even if at the
beginning loss values are higher than previous test because the
neural network is simpler, at the end of the epochs, train and
validation curves are very similar and this network reaches similar
results. In fact, Table 5 shows that numerical results between the
prosed full neural network with 1,411,619 parameters and the
proposed reduced neural network with 96,547 reaches similar
performances in terms of MAE regression loss.

Figure 7: Results obtained with input dataset (meter) with 96,547 parameters

Table 5: Test Results (MAE) with Input Dataset (Meters) (N = 360)

P Model
Train
Loss

Validation
Loss

Test
Loss

1.4M MaxPool 0.011 0.011 0.010

96K MaxPool 0.011 0.011 0.010

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 354

Table 6: Test Results (MAE) For (x,y) Only (N=360)

P Model
Train
Loss

Validation
Loss

Test
Loss

1.4M MaxPool 0.009 0.009 0.010

1.4M MaxPool
Augmentation

0.009 0.009 0.010

96K MaxPool 0.010 0.010 0.010

96K MaxPool
Augmentation

0.010 0.009 0.009

Further investigations to increase performance of the proposed
neural network have also been carried out. In particular, different
normalization techniques (scaling) have been tested in our testing
environment, like MinMaxScaler() and StandardScaler(), but no
substantial improvement has been obtained. The same behavior
(no improvement) has been also noticed changing the function loss
(Euclidean distance) and extending the neural network using
LSTM layers in replacement of Dense layers.

At this point, we tried to reduce the problem limiting the output
of the neural network to only spatial components, i.e., to a vector
T' = [Δx,Δy]. Moreover, in this simplified problem version, we
also tried an intensive data augmentation, obtained with different
strategies. In particular, we take input scans in reverse order, just
odds and even scans and finally odds and even scans in reverse
order. In this way, we obtained about 204,000 samples, that is
about four times the original dataset.

Table 6 summarizes the results obtained by the proposed neural
network in the case of simplified problem. Comparing the results
with the ones in Table 5, we can note a negligible improvement in
train and validation loss, but not in the test loss, so results are
almost the same. Even with the intensive augmentation, we obtain
a slight but not significant improvement for the simpler neural
network with 96,547 parameters.

4. Conclusions

The problem of estimating the moving robot localization, with
the only usage of data coming from 2D laser scanner, has been
addressed by this paper using a simple deep learning approach. For
the dataset used, in the final version composed by 204,000 samples
with only 96,547 parameters, the proposed neural network
achieved good precision performance in terms of Mean Absolute
Error (MAE): one centimeter in translation and one degree in
rotation. We also tried to increase performance of the proposed
network using different strategies and parameters, but no
significant improvements have been obtained.

Even if the encouraging results presented here are almost
comparable with classical localization estimation approaches, at
moment the approaches based on deep learning could be used in
replacement of other state-of-the-art algorithms, since the latter
ones are more flexible and can potentially reach better
performances. Anyway, the overexposed approach remains a good
proof of concept and it can be used for future explorations.

Furthermore, the proposed neural network can be used as
interesting complement or can be integrate in classic localization
methods, since it works in real-time, taking less than 130 μs to
elaborate each estimation on Titan X (Pascal) GPU produced by
Nvidia.

Conflict of Interest

None of the authors have any kind of conflict of interest related to
the publication of the proposed research.

References

[1] G. Spampinato, A. Bruna, I. Guarneri, D. Giacalone, “Deep Learning
Localization with 2D Range Scanner,” International Conference on
Automation, Robotics and Applications (ICARA), 206-210, 2021, DOI:
10.1109/ICARA51699.2021.9376424.

[2] G. Spampinato, A. Bruna, D. Giacalone, G. Messina, “Low Cost Point to
Point Navigation System,” International Conference on Automation,
Robotics and Applications (ICARA), 195-199, 2021, DOI:
10.1109/ICARA51699.2021.9376545.

[3] T. Sattler, B. Leibe, L. Kobbelt, “Efficient & Effective Prioritized Matching
for Large-Scale Image-Based Localization,” IEEE Transaction on Pattern
Analysis and Machine Intelligence, 1744-1756, 2017, DOI:
10.1109/TPAMI.2016.2611662.

[4] R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a versatile and
accurate monocular SLAM system,” IEEE Transactions on Robotics, 31(5),
1147-1163, 2015, DOI: 10.1109/TRO.2015.2463671.

[5] C. Forster, M. Pizzoli, D. Scaramuzza. “SVO: Fast semi-direct monocular
visual odometry,” IEEE International Conference on Robotics and
Automation (ICRA), 15-22, 2014, DOI: 10.1109/ICRA.2014.6906584.

[6] B. Zeisl, T. Sattler, M. Pollefeys, “Camera Pose Voting for Large-Scale
Image-Based Localization,” Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2704-2712, 2015, DOI:
10.1109/ICCV.2015.310.

[7] H. Kim, D. Lee, T. Oh, H. Myung, “A Probabilistic Feature Map-Based
Localization System Using a Monocular Camera,” Sensors, 15(9), 21636-
21659, 2015, DOI: 10.3390/s150921636.

[8] E. Olson, “M3rsm: Many-to-many multi-resolution scan matching,” IEEE
International Conference on Robotics and Automation (ICRA), 5815-5821,
2015, DOI: 10.1109/ICRA.2015.7140013.

[9] G. D. Tipaldi, K. O. Arras, “Flirt-interest regions for 2d range data,” IEEE
International Conference on Robotics and Automation (ICRA), 3619-3622,
2010, DOI: 10.1109/ROBOT.2010.5509864.

[10] S.I. Roumeliotis, G. A. Bekey, W. Burgard, S. Thrun, “Bayesian estimation
and Kalman filtering: A unified framework for mobile robot localization,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2985-2992, 2000, DOI:
10.1109/ROBOT.2000.846481.

[11] S. Park, K. S. Roh, “Coarse-to-Fine Localization for a Mobile Robot Based
on Place Learning With a 2-D Range Scan,” IEEE Transactions on Robotics,
528-544, 2016, DOI: 10.1109/TRO.2016.2544301.

[12] P. Besl, H.D. McKay, “Method for registration of 3-D shapes,” Sensor
Fusion IV: Control Paradigms and Data Structures, International Society for
Optics and Photonics, 239-256, 1992, DOI: 10.1109/34.121791.

[13] F. Pomerleau, F. Colas, R. Siegwart, S. Magnenat, “Comparing icp variants
on real-world data sets,” Autonomous Robots, 34(3), 133–148, 2013, DOI:
10.1007/s10514-013-9327-2.

[14] C. Friedman, I. Chopra, O. Rand, “Perimeter-based polar scan matching (PB-
PSM) for 2D laser odometry,” Journal of Intelligent and Robotic Systems:
Theory and Applications, 80(2), 231–254, 2015, DOI: 10.1007/s10846-014-
0158-y.

[15] J. Zhang, S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,”
Robotics: Science and Systems, 109-111, 2014, DOI:
10.15607/RSS.2014.X.007.

[16] A. Kendall, M. Grimes, R. Cipolla. “Posenet: A convolutional network for
real-time 6-dof camera relocalization,” Proceedings of the IEEE
International Conference on Computer Vision, 2938-2946, 2015, DOI:
10.1109/ICCV.2015.336.

[17] S. Wang, R. Clark, H. Wen, N. Trigoni, “Deepvo: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks,” IEEE
International Conference on Robotics and Automation (ICRA), 2043-2050,
2017, DOI: 10.1109/ICRA.2017.7989236.

[18] R. Li, S. Wang, Z. Long, D. Gu, “Undeepvo: Monocular visual odometry
through unsupervised deep learning,” IEEE International Conference on

http://www.astesj.com/

G. Spampinato et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 348-355 (2021)

www.astesj.com 355

Robotics and Automation (ICRA), 7286-7291, 2018, DOI:
10.1109/ICRA.2018.8461251.

[19] H. M. Cho, H. Jo, S. Lee, E. Kim, “Odometry Estimation via CNN using
Sparse LiDAR Data,” International Conference on Ubiquitous Robots (UR),
124-127, 2019, DOI: 10.1109/URAI.2019.8768571.

[20] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, C. Cadena, “From
perception to decision: A data-driven approach to end-toend motion planning
for autonomous ground robots,” IEEE International Conference on Robotics
and Automation (ICRA), 1527-1533, 2017, DOI:
10.1109/ICRA.2017.7989182.

[21] J. Li, H. Zhan, B. M. Chen, I. Reid, G. H. Lee, “Deep learning for 2D scan
matching and loop closure,” International Conference on Intelligent Robots
and Systems (IROS), 763-768, 2017, DOI: 10.1109/IROS.2017.8202236.

[22] M. Valente, C. Joly, A. de La Fortelle, “An LSTM Network for Real-Time
Odometry Estimation,” IEEE Intelligent Vehicles Symposium (IV), 1434-
1440, 2019, DOI: 10.1109/IVS.2019.8814133.

[23] M. Velas, M. Spanel, M. Hradis, A. Herout, “CNN for IMU assisted
odometry estimation using velodyne LiDAR,” IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC),
71-77, 2018, DOI: 10.1109/ICARSC.2018.8374163.

[24] S. Xu, W. Chou, H. Dong, “A Robust Indoor Localization System
Integrating Visual Localization Aided by CNN-Based Image Retrieval with
Monte Carlo Localization,” Sensors, 19(2), 249, 2019, DOI:
10.3390/s19020249.

[25] W. Hess, D. Kohler, H. Rapp, D. Andor, “Real-time loop closure in 2d lidar
slam,” IEEE International Conference on Robotics and Automation (ICRA),
1271-1278, 2016, DOI: 10.1109/ICRA.2016.7487258.

[26] C. M. Bishop, “Neural Networks for Pattern Recognition,” Oxford
University Press, 296-298, 1996, ISBN:978-0198538646.

http://www.astesj.com/

	2. Proposed Approach
	2.1. Dataset Generation
	2.2. Neural Network
	2.3. Training

	3. Experimental Results
	4. Conclusions
	Conflict of Interest
	References

