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 Navigation of a moving object (drone, vehicle, robot, and so on) and related localization in 
unknown scenes is nowadays a challenging subject to be addressed. Typically, different 
source devices, such as image sensor, Inertial Measurement Unit (IMU), Time of Flight 
(TOF), or a combination of them can be used to reach this goal. Recently, due to increasing 
accuracy and decreasing cost, the usage of 2D laser range scanners has growth in this 
subject. Inside a complete navigation scheme, using a 2D laser range scanner, the proposed 
paper considers alternative ways to estimate the core localization step with the usage of 
deep learning. We propose a simple but accurate neural network, using less than one 
hundred thousand overall parameters and reaching good precision performance in terms 
of Mean Absolute Error (MAE): one centimeter in translation and one degree in rotation. 
Moreover, the inference time of the neural network is quite fast, processing eight thousand 
scan pairs per second on Titan X (Pascal) GPU produced by Nvidia. For these reasons, the 
system is suitable for real-time processing and it is an interesting complement and/or 
integration for traditional localization methods. 
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1. Introduction 

This paper is an extension of the work originally presented in 
ICARA [1]. Further investigations to increase performance of the 
approach are done changing deep learning parameters, moreover 
problem simplification and data augmentation have been tested. 

The field of the proposed paper is navigation system and 
related localization, which is still considered a challenging task [2]. 
The core function of these kind of systems is for sure the 
localization itself. Main goal of this vital function is the correct 
estimation of the step-by-step position of the moving robot in 
unknown scenes. To perform this task different data sensors can 
be used. Moreover, to reach better estimation usually previous step 
data are stored inside an updating map. 

About localization approaches proposed in literature, two main 
localization groups can be recognized: vision-based and laser-
based. 

Vision-based localization techniques just use images to 
achieve their goal. Usually, features inside previous and current 
image are calculated and matched to retrieve the global 
displacement. In literature, different vision-based techniques have 
been proposed:  effective prioritized matching [3], ORB-SLAM 
[4], monocular semi-direct visual odometry (SVO) [5], camera 
pose voting [6], localization based on probabilistic feature map [7], 

etc. More sophisticated solutions, like multi-resolution image 
pyramid methods, have been proposed to reach more robust feature 
matching [8]. These approaches are usually robust, but they do not 
have useful distance information, i.e., it is difficult to map the 
estimated trajectory (in pixel) in the real world (in cm). 

On the other hand, laser-based localization techniques just use 
laser scans to achieve their goal. A features matching approach, as 
in vision-based localization, is not simple to be implemented. This 
is mainly due to the poor information of laser scans compared to 
images. In fact, in the case of image details (e.g., corners), we can 
note only weak variations in range measurements and then a lack 
of distinctive features to be analyzed [9].  

Usually, Bayesian filtering are largely used in laser-based 
techniques to consider the robot position as a problem of 
probability distribution estimation based on grid maps [10,11]. 
Apart Bayesian filtering, in literature other laser-based proposed 
techniques are: iterative closest point (ICP) [12] and related 
variants [13], which minimize the matching error between two 
point-clouds estimating the related transformation, perimeter 
based polar scan matching (PB PSM), Lidar odometry and 
mapping (LOAM) [15], which achieves real time processing by 
running in parallel two different algorithms, and so on. Even if 
these approaches usually achieve precise localization, since 
distance information is available, they can fail in scene changing 
conditions. In fact, when an object is moving in the scene, due to 
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the occlusions, we can have lack of information in the moving 
object area and then the estimated localization can be wrong. 

Recently, in vision-based localization, to extract and match 
image features, deep learning approaches have been successfully 
used. These promising approaches allow to estimate camera 
position. A lot of deep learning approaches have been proposed in 
literature: PoseNet [16], which for pose regression task uses the 
convolutional neural networks (CNNs), Deepvo [17], which for 
the same task uses recurrent neural networks (RNNs), undeepVO 
[18], which estimates the monocular camera pose using a deep 
learning unsupervised method, and so on. Unfortunately, at 
moment the deep learning-based methods do not achieve the same 
pose estimation accuracy of classical vision-based localization 
approaches. 

Inspired by vision-based localization approaches based on 
deep learning algorithms, few attempts of deep learning methods 
have also been suggested for laser-based localization: in [19] 
authors estimate odometry processing 3D laser scanner data with 
a series of CNNs, in [20] authors trained for giving steering 
commands a navigation model target-oriented, in [21] authors 
performed loop closure and matching of consecutive scans making 
use of a CNN network, in [22] authors improved the odometry 
estimation considering also temporal features using a RNN, able 
to model sequential long-term dependencies, and so on. 

Regarding the deep learning laser-based localization, as 
indicated in the case of vision-based localization, unfortunately 
they still do not achieve the accuracy of the pose estimation 
compared to classical laser-based localization. For this reason, in 
literature some authors propose the integration of deep learning 
approaches with the classical ones: in [23] the authors make use of 
Inertial Measurement Unit (IMU) in combination with CNNs for 
3D laser scanners for assisted odometry, in [24] the authors use the 
result of vision-based localization approaches based on CNN as 
starting seed for Monte Carlo localization algorithm, to speed-up 
algorithm convergence, also increasing robustness and precision, 
and so on. 

It is easy to understand that the field of deep learning 
localization, in particular about laser-based approaches, has not yet 
been intensively explored and, at moment, it is still considered a 
challenging process. In fact, just a small number of papers discuss 
about this subject [22]. Our choise is to go further in this 
investigation, to obtain a simple deep learning laser-based 
localization, using only data taken by 2D laser scanners. Moreover, 
we tried to reduce as far as possible the number of parameters used 
by the proposed network, to deal with the low-cost resources 
constraint. 

Our contribution to the research in the field of navigation 
system, using deep learning approaches, with only 2D laser scan 
input is firstly the exploration of state of art algorithms. Another 
contribution is to indicate a methodology to generate the ground 
truth for the neural network without using real sensors but 
simulating them with existing powerful navigation tools. 

Novelties of the proposed system are in both neural network 
dataset generation and training. In particular, in data generation we 
indicate a methodology to choose properly the angle resolution 
trying to reduce the collisions per frame (to avoid loss of important 
data) and to maximize array density (to avoid working with sparse 
data). In this way, the neural network was more able to solve the 
regression problem.  

In the training phase, the novelty is the demonstration with real 
tests that in regression problems the choice of input/output values 
scale is vital to let the neural network working. In fact, after several 
experiments,  we obtained the correct scale measures for distances 
and angles. 

At last, the great contribution was to find, after lots of 
experiments with various neural network hyper parameters, a 
really light network to solve the localization problem with good 
performances in terms of  mean absolute error between estimated 
positions and ground truth.  

The proposed research is composed by the following Sections: 
Section 2, where the proposed deep learning laser-based 
localization is described; Section 3, where the experimental results 
obtained are deeply described; Section 4, where final 
considerations are remarked. 

2. Proposed Approach 

A typical navigation system is described in Figure 1. A starting 
moving object position (x,y,α) is considered, where (x,y) are the 
horizontal and vertical position in the cartesian axis and α is the 
orientation angle. Usually, at the beginning the position is assumed 
to be (0,0,0). Every time laser scan data is available (θ, d), where  
θ is the angle and d is the distance from object in front of the laser 
beam, the localization step will calculate the new position (x',y',α'). 
The system will then decide next movement. Depending on how it 
is programmed the moving object (for example the robot), the 
system can decide to continue moving (in the case an obstacle is 
not found) or to stop motors (when an obstacle is found). The 
correct command are then send to the motor control (which interact 
with the IMU) to update the movement. Positions and movements 
are updated each time. 

Inside the navigation system, the proposed deep learning 
approach is applied on the core localization step. From this point, 
this article will focus only on the localization step and all the 
research will be focused on this particular block of the navigation 
system.  

To reach this objective we used a wheeled robot equipped with 
the laser scanner A2 RPLidar on the top. This rotating laser scanner 
has twelve meters as maximum range, view at 360 degrees, 
running up to fifteen Hz. Thanks to the robot, we acquired a custom 
dataset in various environments (apartment, laboratory and office). 

The ground truth generation schema used is shown in Figure 2. 
At the beginning, the dataset acquisition is needed to record the 
input Lidar dataset. Each scan is composed by multiple couples (d, 
θ), where d is the distance from the object and θ is the related angle. 
Once the dataset was obtained, we needed to generate the ground 
truth position (x, y, α) for each sample taken. Since we do not have 
the real position of the robot for each scan contained in the 
acquired dataset, we needed a simulation environment to obtain a 
ground truth. 

For this purpose, we make usage of the MATLAB Navigation 
Tool. The generated ground truth was tested using a simple 
Mat2Map program to display the path of obtained positions (x, y, 
α) for each sample taken and the map generated by Lidar scans. In 
this way, we also checked the robustness of  Navigation Tool. Even 
if it is a very slow method, we tested it in different conditions and 
we conclude to be very precise, so it was used as reference.  It is 
based on Google Cartographer [25], which builds multiple 
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submaps and try to align upcoming scans with previous nearby 
submaps, generating the constrains on a graph.  

Once we generated the custom dataset and related ground truth, 
we perform our experiments using the TensorFlow framework 
with Keras wrapper in a Python environment. In this configuration, 
to obtain the best compromise between quality and complexity, we 
tried different data binarization and augmentation with various 
neural network configurations. 

 
 

Figure 1: Navigation system. 

 

 

Figure 2: Ground truth generation schema.  

2.1. Dataset Generation 

The main challenge in deep learning approaches is the 
acquisition of large amounts of data, to allow the neural network 
to work fine in any real scenario. Our generated dataset consists in 
about 51,000 samples, which we tested to be enough in our 
experiments for training the proposed neural network. Each sample 
is composed by two subsequent scans acquired by Lidar. Each scan 
is expressed by multiple couples (d, θ), that is the distance and the 
angle from the nearest found object. 

Data acquisition cannot be used as it is.  We instead need to 
encode acquired data into a panoramic like depth image, so we 
need a sort of binarization of each scan before to be paired with the 

following one. Data binarization is inspired by a previous work 
[21] to encode laser scans into a 1D vector. To obtain a 1D vector, 
in each scan, all distances are binned into angle bins, according to 
the chosen angle resolution. In this way, we stored all depth values 
inside a 1D vector, where all the possible depths are represented 
(from 0° to 360°). As soon as two subsequent scans are binarized, 
we can couple them to be used as neural network input. 

Laser range scanners usually give (scan by scan) distances 
from the identified nearest object for constant angles, so 
binarization is simple, because we have a fixed number of possible 
angles to be considered into the 1D vector. Instead, in the chosen 
laser range scanner A2 RPLidar in each scan the angles can vary, 
from 0° to 360°. For this reason, it is not possible to fix we the 
angle resolution as in previous works, e.g., in [22] the authors use 
0.10° and in [21] the authors use 0.25°, so a preliminary 
investigation to find optimal angle resolution is needed. In this 
research, we tried at the same time to maximize array density and 
to minimize collisions per frame. Array density is for each scan the 
number of non-zero value bins, while collisions per frame is the 
total number of data ranges which are in the same bin. 

Table 1 shows the impact of the chosen β (angle resolution) on 
N (total number of bins) and then on mean collisions per frame and 
mean array density. Since A2 RPLidar have got a 360 degrees 
view, the laser data is separated into β degree bins, for a total 
amount of N=360°/β° bins. Of course, increasing β (and then 
decreasing the total number of N bins) the array density increases 
and of course collisions per frame will become bigger. In our 
experiments, we tried different angle resolutions β to make at the 
end the proper decision about which configuration to use in the 
proposed neural network. 

As indicated in Table 1, particularly at higher angle resolutions 
β, collision is an important aspect to solve to guarantee the neural 
network to work property. In [22] authors chose to take the mean 
of all distances are in the same bin, probably because in their 
experiments the collision occurred rarely and distances at the same 
degree was similar. In our experiments, we consider two main 
aspects: laser range scanner is more precise for lower distances and 
average of two different distances at the same degree can introduce 
false objects distances. For these reasons, we choose to take the 
minimum distance (instead of average distance) for distances 
falling in the same degree. 

Table 1: Dataset Binarization 

β N 
Collisions 
per frame 

Array 
Density 

0.10 3600 0.05 9% 

0.25 1440 0.13 22% 

0.50 720 0.48 46% 

1.0 360 2.54 89% 

2.2. Neural Network 
The network we propose in this work, from a consecutive pair 

of two scans (st-1,st) done by the chosen Lidar, obtains the robot 
displacement between them, trying the estimation of their relative 
pose transformation: 

T = [Δx,Δy,Δα]   (1) 
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where Δx and Δy are respectively the horizontal and vertical 
translations and Δα is the rotation angle between the two scans (st-

1,st). We can only estimate the displacement of the robot in two 
dimensions, since we choose to use just a two dimension sensor. 

The final objective of the neural network is to learn the 
unknown function g(), which, at time t, maps (st-1,st) to the pose 
transformation T : 

Tt = g(st-1,st)   (2) 

In the training step the unknown function g() is learned. 
Moreover, thanks to the accumulation of the estimated local poses 
from the starting of the process up to time t, we obtain the robot 
global position at time t. The chosen loss functions are: mean 
absolute error (MAE) and mean square error (MSE), which are 
commonly used in deep learning regression problems. 

The strategy we tried to implement here is to fit our regression 
problem with standard deep learning 2D image matching 
problems. The difference is that, in our case, instead of 2D images, 
we have obtained (thanks to dataset binarization) 1D panoramic 
depth images. In this way, as in the case of images, we can use 
consecutive CNN to extract spatial features obtained by the sensor 
in the tested conditions. After that, additional fully connected 
layers (dense layers) allow to the neural network to understand 
patterns within extracted spatial features to provide the matching 
and then the current robot position estimation in the unknown 
environment. 

 
Figure 3: Proposed deep learning approach. 

Table 2: Parameters of Neural Network 

N NN Model NN Parameters 

3600 CNN+LSTM 21,078,563 

3600 CNN+Dense 5,343,779 

1440 CNN+LSTM 15,835,683 

1440 CNN+Dense 2,722,339 

720 CNN+LSTM 14,262,819 

720 CNN+Dense 1,935,907 

360 CNN+LSTM 13,214,243 

360 CNN+Dense 1,411,619 

The proposed neural network is shown in Figure 3. The 
suggested neural network has been inspired by the one indicated in 
[22], but some differences should be evidenced. Firstly, we make 
lots of trials to obtain a low complexity neural network, without to 
lose in quality performance. Moreover, we used max pool layers 
(instead of average pool layers) reducing complexity and 
extracting only most important features spatially distributed. 
Better results were obtained using max pooling, since as 
aforementioned (see Table 1), the binarized laser scans tends to be 
sparse, when the angle resolutions β tends to increase. For the same 
reason, we also eliminate the stride parameter of the various neural 
network convolutional filters, which can eliminate useful 
information for sparse binarized laser scans. To maintain the same 
dimension, instead of using stride parameter in the convolutional 
filters, we used other max pooling before applying these filters. 

As aforementioned, we experimented different neural network 
configurations, in particular varying: 

• β (angle resolution) and then N (number of bins), to define the 
correct dimension of input data; 

• last two network layers, trying both dense layers [21] and long 
short term memory (LSTM) layers [22]. 

 The calculation of the NN parameters is shown in Table 2. This 
number is impacted by N (number of bins) and by the neural 
network model used. As indicated, when N is increased and when 
LSTM layers are used, the total number of NN parameters and then 
the time to be executed will increase too. It is to note that the 
changes made compared to [22], that is max pool in replacement 
of strides and average pool, do not impact the overall NN 
parameters. 

2.3. Training 

For the sake of clearness, now we indicate in detail the input 
and ground thru output of the proposed neural network. Input for 
the network is composed by composed by a set of couples of 
consecutive Lidar scans (θ, d). These scans are preprocessed 
allowing to binarize them into sets of 2 X N matrixes, as indicated 
in Section 2.1. In these matrixes, N depends on β (angle 
resolution), like indicated in Table 1.  

About the reference (ground thru) output of the proposed NN, 
it is composed by a set of vectors T = [Δx,Δy,Δα], which are the 
ground thru positions of the moving object, obtained by applying 
Navigation Tool (MATLAB) to the input Lidar scans (θ, d). 

The various experiments were performed in a Python 
environment with the use of TensorFlow framework and Keras 
wrapper. Moreover, a workstation was used for training execution, 
that is a Xeon ES-2630 (Intel) octacore machine with 62 GB of 
RAM and a Titan X (Pascal) GPU produced by Nvidia. The chosen 
GPU has got 12 GB of RAM and it is equipped by 3584 CUDA 
cores, to allow lots of parallelization in training step for faster 
execution. 
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The details for training step are the following: 0.0001 function 
cost minimization learning rate, 500 epochs for training the neural 
network, 32 batch size and Adam training optimizer used.  We 
tried other kinds of training optimizers, but we did not notice any 
significant difference in regression performances. 

3. Experimental Results 

Lots of tests have been executed with different neural network 
configurations, as indicated in Table 2, and with different indoor 
environments. As expected, it is important to note that classical 
Convolutional Neural Networks (CNNs) work better in the case of 
dense input datasets. For this reason, we used max pooling instead 
of average pooling in final tests. For the same reason, even if, at 
the beginning, we tried in our experiments all the different neural 
network configurations, final research was focused on β (angle 
resolution) set to one degree and then N (number of bins) set to 
360. This choice also allows us to reduce the total neural network 
parameters and the overall complexity.  

Figures in this Section are representative of a particular testing 
to underline how (depending on scaling applied) the neural 
network tends to converge (generalizing the regression problem) 
or not and to underline how the final suggested neural network fits 
our needs (lightness and precision). In particular, in the X axis the 
evolution of the network in various epochs (trials) is represented 
and in the Y axis the loss in precision is represented (first trials in 
mean square error, after we used mean absolute error). When train 
and validation curves are similar with low loss the neural network 
works properly, while when they are different a problem occurs. 
In this Section we try to explain a particular reason (scale) of this 
problem. 

Table 3 shows the results obtained using input distances and 
output positions expressed in millimeters. Results are really bad: 
the proposed network seems to make a sufficient regression work 
for training set, but for validation and test set it does not reach good 
performance at all. In general, as expected, max pooling strategy 
reaches better performance than average pooling and reducing the 
angle resolution and then the N dimension of the input binarized 
scans we obtain better loss values (MSE).  

To better understand the evolution of this first experiment done 
on the proposed neural network epoch by epoch, the first 150 
epochs are displayed in Figure 4. This graph is referred to the case 
N = 1440 with max pooling (train loss = 2.48 MSE; validation loss 
= 216 MSE; test loss = 233 MSE), but similar considerations can 
be done on the other different configurations. It is easy to note that 
while the curve for train decreases, the curve for validation is flat, 
so the proposed network, in this case, is not able to solve the 
overexposed regression problem and to generalize it. 

Table 3: Test Results (MSE) with Input Dataset (Millimeters) 

N Model 
Train 
Loss 

Validation 
Loss 

Test 
Loss 

3600 AvePool 2.78 250 258 

3600 MaxPool 2.75 248 250 

1440 AvePool 2.30 228 236 

1440 MaxPool 2.48 216 233 

720 AvePool 2.36 221 240 

720 MaxPool 3.27 220 238 

360 AvePool 7.54 220 235 

360 MaxPool 7.02 218 230 

 

 
Figure 4. Results obtained with input dataset (millimeter).  

In the used approach, the main issue is the scale discrepancy in 
the input variables (x and y expressed in millimeters and α 
expressed in degree), which often increases the difficulty to 
correctly model the neural network to solve the regression 
problem. A common trick used in these cases is to pre-process the 
input variables before they are fed to the neural network [26]. In 
the same way, also the outputs of the network (d expressed in 
millimeters and θ expressed in degree) should be processed to 
obtain the correct output values. 

A commonly used pre-processing step is just a simple linear 
scaling of network variables [26], so we just changed the distance 
measure passing from millimeter to centimeter and the related 
results are shown in Table 4. As indicated, better results are 
obtained compared to the first tentative with input distances and 
output positions expressed in millimeters. Even if results are better, 
we must again to note that they are not good enough: again, the 
proposed network seems to make a sufficient regression work for 
training set, but for validation and test set it does not reach similar 
good performance. Moreover, as expected, max pooling strategy 
reaches better performance than average pooling and reducing the 
angle resolution and then the N dimension of the input binarized 
scans we obtain better loss values (MSE). 

Table 4: Test Results (MSE) with Input Dataset (Centimeters) 

N Model 
Train 
Loss 

Validation 
Loss 

Test 
Loss 

3600 AvePool 0.09 4.12 3.90 

3600 MaxPool 0.03 3.98 3.83 

1440 AvePool 0.28 3.97 3.77 
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1440 MaxPool 0.11 3.87 3.68 

720 AvePool 0.18 3.86 3.76 

720 MaxPool 0.13 3.84 3.67 

360 AvePool 0.28 3.75 3.70 

360 MaxPool 0.19 3.67 3.64 

 

 
Figure 5. Results obtained with input dataset (centimeter). 

To better understand the evolution of the second experiment 
done on the proposed neural network epoch by epoch, the first 150 
epochs are displayed in Figure 5. To allow a visual comparison 
with Figure 4, also this graph is referred to the case N = 1440 with 
max pooling (train loss = 0.13 MSE; validation loss = 3.84 MSE; 
test loss = 3.683 MSE). Of course, similar considerations can be 
done on the other different configurations. It is important  to put 
into evidence that MSE is not a linear measure, but quadratic. This 
is the reason why the loss is drastically reduced in comparison with 
the previous experiment. Moreover, the train curve correctly 
decreases, as in previous case, while in the current test the 
validation curve is not completely flat, but it starts to go down. As 
first experiment, in the current test the proposed network cannot 
model the neural network to generalize and correctly solve the 
regression problem, but improvements noticed give us an 
important hint to work with: to obtain the best regression results, 
firstly we must find the correct rescaling to apply to input and 
output data measures (distance and angle). 

At this point, we make some rescaling experiments. To 
maintain similar scale in both input dataset and output variables, 
we tried to scale translation data by one thousand (in this way we 
use meters, instead of millimeters as measure) and rotation data by 
one hundred. This rescaling configuration gives us best results. 
Furthermore, we decide to make use of Mean Absolute Error 
(MAE), instead of Mean Squared Error (MSE). In this way, we 
obtained similar loss curves, but with results simpler to understand 
and comment, because MAE is a linear measure, while MSE is 
quadratic. Figure 6 shows that good results are finally reached 
(train loss: 0.011 MAE; validation loss: 0.011 MAE; test loss: 
0.010 MAE), using the new scaling factors to be applied to input 
and output data with a very simple configuration (only 1,411,619 
network parameters). Like other experiments, the train curve 
correctly decreases, but this time the validation curve also 

decreases with similar slope. This indicates that finally we reached 
our main goal: the neural network can now correctly generalize 
and solve the proposed regression problem.  

 
Figure 6: Results obtained with input dataset (meter) with 1,411,619 parameters 

In our research, we tried to further reduce the parameters in the 
proposed neural network for lighter solutions, to be implemented 
in microcontrollers with low resources and in particular with 
memory (RAM and FLASH). To reach this goal, we tried to reduce 
the  elements in the last two layers (dense layers). After several 
trials, we realized that the results are still good also deleting last 
two layers, obtaining a very low neural network parameters 
(96,547). Figure 7 shows that in this experiment, even if at the 
beginning loss values are higher than previous test because the 
neural network is simpler, at the end of the epochs, train and 
validation curves are very similar and this network reaches similar 
results. In fact, Table 5 shows that numerical results between the 
prosed full neural network with 1,411,619 parameters and the 
proposed reduced neural network with 96,547 reaches similar 
performances in terms of MAE regression loss. 

 
Figure 7: Results obtained with input dataset (meter) with 96,547 parameters 

Table 5: Test Results (MAE) with Input Dataset (Meters) (N = 360) 

P Model 
Train 
Loss 

Validation 
Loss 

Test 
Loss 

1.4M MaxPool 0.011 0.011 0.010 

96K MaxPool 0.011 0.011 0.010 
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Table 6: Test Results (MAE) For (x,y) Only (N=360) 

P Model 
Train 
Loss 

Validation 
Loss 

Test 
Loss 

1.4M MaxPool 0.009 0.009 0.010 

1.4M MaxPool 
Augmentation 

0.009 0.009 0.010 

96K MaxPool 0.010 0.010 0.010 

96K MaxPool 
Augmentation 

0.010 0.009 0.009 

Further investigations to increase performance of the proposed 
neural network have also been carried out. In particular, different 
normalization techniques (scaling) have been tested in our testing 
environment, like MinMaxScaler() and StandardScaler(), but no 
substantial improvement has been obtained. The same behavior 
(no improvement) has been also noticed changing the function loss 
(Euclidean distance) and extending the neural network using 
LSTM layers in replacement of Dense layers. 

At this point, we tried to reduce the problem limiting the output 
of the neural network to only spatial components, i.e., to a vector 
T' = [Δx,Δy]. Moreover, in this simplified problem version, we 
also tried an intensive data augmentation, obtained with different 
strategies. In particular, we take input scans in reverse order, just 
odds and even scans and finally odds and even scans in reverse 
order. In this way, we obtained about 204,000 samples, that is 
about four times the original dataset. 

Table 6 summarizes the results obtained by the proposed neural 
network in the case of simplified problem. Comparing the results 
with the ones in Table 5, we can note a negligible improvement in 
train and validation loss, but not in the test loss, so results are 
almost the same. Even with the intensive augmentation, we obtain 
a slight but not significant improvement for the simpler neural 
network with 96,547 parameters. 

4. Conclusions 

The problem of estimating the moving robot localization, with 
the only usage of data coming from 2D laser scanner, has been 
addressed by this paper using a simple deep learning approach. For 
the dataset used, in the final version composed by 204,000 samples 
with only 96,547 parameters, the proposed neural network 
achieved good precision performance in terms of Mean Absolute 
Error (MAE): one centimeter in translation and one degree in 
rotation. We also tried to increase performance of the proposed 
network using different strategies and parameters, but no 
significant improvements have been obtained. 

Even if the encouraging results presented here are almost 
comparable with classical localization estimation approaches, at 
moment the approaches based on deep learning could be used in 
replacement of other state-of-the-art algorithms, since the latter 
ones are more flexible and can potentially reach better 
performances. Anyway, the overexposed approach remains a good 
proof of concept and it can be used for future explorations. 

Furthermore, the proposed neural network can be used as 
interesting complement or can be integrate in classic localization 
methods, since it works in real-time, taking less than  130 μs to 
elaborate each estimation on Titan X (Pascal) GPU produced by 
Nvidia.   
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