Doubly Nonlinear Parabolic Systems In Inhomogeneous Musielak- Orlicz-Sobolev Spcaes

Doubly Nonlinear Parabolic Systems In Inhomogeneous Musielak- Orlicz-Sobolev Spcaes

Volume 2, Issue 5, Page No 180-192, 2017

Author’s Name: Ahmed Aberqi1,a), Mhamed Elmassoudi2, Jaouad Bennouna2, Mohamed Hammoumi2

View Affiliations

1University of Fez, National school of applied sciences.Department of Electric and computer engineering, Fez, Morocco
2University of Fez, Faculty of Sciences Dhar El Mahraz. Laboratory LAMA, Department of Mathematics, B.P 1796 Atlas Fez, Morocco

a)Author to whom correspondence should be addressed. E-mail: aberqi_ahmed@yahoo.fr

Adv. Sci. Technol. Eng. Syst. J. 2(5), 180-192 (2017); a  DOI: 10.25046/aj020526

Keywords: Parabolic system, Museilack-Orlicz spaces, Renormalized solutions

Share

404 Downloads

Export Citations

In this paper, we discuss the solvability of the nonlinear parabolic systems associated to the nonlinear parabolic equation: \frac{\partial b_{i}(x,u_{i})}{\partial t} -div(a(x,t,u_{i},\nabla u_{i}))- \phi_{i}(x,t,u_{i})) +f_{i}(x,u_{1},u_{2})=0 where the function  b_{i}(x,u_{i}) verifies some regularity conditions, the term \Big(a(x,t,u_{i},\nabla u_{i})\Big) is a generalized Leray-Lions operator and \phi_{i} is a Caratheodory function assumed to be  Continuous on u_i and satisfy only a growth condition. The source term f_{i}(t,u_{1},u_{2}) belongs to L^{1}(\Omega\times(0,T)).

Received: 01 June 2017, Accepted: 12 July 2017, Published Online: 29 December 2017

Introduction

Given a bounded-connected open set Ωof RN (N = 2), with Lipschitz boundary Ω, QT = Ω × (0,T ) is the generic cylinder of an arbitrary finite hight, T < +∞. We prove the existence of a renormalized solutions for the nonlinear parabolic systems:

∂bi∂t(x,ui) − div(a(x,t,ui, ui)) − divi(x,t,ui))

+fi(x,u1,u2) = 0 in QT , (1.1) ui = 0 on (0,T ) × ,

                         bi(x,ui)(t = 0) = bi(x,ui,0)         in Ω,

where i=1,2. Here the vector field a : Ω × R × RN RN is a Caratheodory function such that´

− div(a(x,t,ui, ui)) is a Leray-lions operator defined from the Inhomogeneous Musielak-Orlicz-Sobolev

Spcaes W01,xLϕ(QT )into its dual W −1,xLψ(QT ). Let bi : Ω×R R a Caratheodory function such that for every´ x ∈ Ω, bi(x,.) is a strictly increasing C1-function, the divegential term Φi(x,t,ui) is a Caratheodory function´ satisfy only a polynomial growth with respect to the anisotropic N-function ϕ (see (4.6)), the data u0,i is in L1(Ω) such that bi(.,u0,i) in L1(Ω) and the source fi is a

Caratheodory function satisfy the assumptions ((4.7)-´ (4.10)). When problem ((1.1)) is investigated, there is a difficulty due to the fact that the data b1(x,u01(x)) and b )) only belong to L1 and the functions a(x,t,ui, ui),Φi(x,t,ui) and fi(x,u1,u2) do not belong to (LN in general, so that proving existence of weak solution seems to be an arduous task, and we cannot use the Stocks formula in the a priori estimates of the nonlinearity ,Φi(x,t,ui). In order to overcome this difficulty, we work with the framework of renormalized solutions (see Definition 3.1). One of the models of applications of these operators is the system of Boussinesq:

                                                                                  )     in         QT

              in     QT

                 u(t = 0) = u0, b(θ)(t = 0) = b(θ0)          on Ω

                       u = 0      θ = 0     on      Ω × (0,T )

Equation first equation is the motion conservation equation, the unknowns are the fields of displacement u : QT RN and temperature θ : QT R, The field ε(u) = 12(∇u +(∇u)t) is the strain rate tensor.

It is our purpose, in this paper to generalize the result of ([1], [2], [3]) and we prove the existence of a renormalized solution of system (1.1).

The plan of the paper is as follows: In Section 2 we give the framework space, in Section 3 and 4 we give some useful Lemmas and basics assumptions. In Section 5 we give the definition of a renormalized solution of (1.1), and we establish (Theorem 5.1) the existence of such a solution.

2         Preliminaries

2.1        Musielak-Orlicz function

Let Ω be an open subset of RN (N ≥ 2), and let ϕ be a real-valued function defined in Ω × R+ and satisfying conditions:

Φ1:ϕ(x,.) is an N-function for all x ∈ Ω (i.e. convex, non-decreasing, continuous, ϕ(x,0) = 0

,ϕ(x,0) > 0 for t >                  = 0 and

limt→∞ infx∈Ω ϕ(x,tt ) = ∞). Φ2:ϕ(.,t) is a measurable function for all t ≥ 0. A function ϕ which satisfies the conditions Φ1 and Φ2 is called a Musielak-Orlicz function.

For a Musielak-Orlicz function ϕ we put ϕx(t) = ϕ(x,t) and we associate its non-negative reciprocal function ϕx−1, with respect to t, that is ϕx−1(ϕ(x,t)) = ϕ(x,ϕx−1(t)) = t

Let ϕ and γ be two Musielak-Orlicz functions, we say that ϕ dominate γ, and we write γ ϕ, near infinity (resp.globally) if there exist two positive constants c and t0 such that for a.e. x ∈ Ω γ(x,t) ≤ ϕ(x,ct) for all t t0 (resp. for all t ≥ 0 ). We say that γ grows essentially less rapidly than ϕ at 0(resp. near infinity) and we write γ ≺≺ ϕ, for every positive constant c, we have

(resp.limt

Remark 2.1 [4]. If γ ≺≺ ϕ near infinity,then > 0 there exist k such that for almost all x ∈ Ω, we have

                           (x,t)       t 0

2.2       Musielak-Orlicz space

For a Musielak-Orlicz function ϕ and a measurable function u : Ω → R, we define the functionnal

Z

%ϕ,dx.

The set Kϕ(Ω) = {u : Ω → R mesurable :

%ϕ,(u) < ∞} is called the Musielak-Orlicz class . The Musielak-Orlicz space Lϕ(Ω) is the vector space generated by Kϕ(Ω); that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivalently

u

Young with respect to s. We say that a sequence of function un Lϕ(Ω) is modular convergent to u Lϕ(Ω) if there exists a constant λ > 0 such that u u

This implies convergence for σLϕ,ΠLψ)[see [5]].

In the space Lϕ(Ω), we define the following two norms

ku ko

which is called the Luxemburg norm, and the socalled Orlicz norm by

k|u |kϕ,Ω = supkvkψ≤1RΩ |u(x)v(x)|dx

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are equivalent [8]. Kϕ(Ω) is a convex subset of Lϕ(Ω). The closure in Lϕ(Ω) of the set of bounded measurable functions

with compact support in Ω is by denoted Eϕ(Ω). It is a separable space and (Eϕ(Ω))= Lϕ(Ω). We have Eϕ(Ω) = Kϕ(Ω), if and only if ϕ satisfies the ∆2 −condition for large values of t or for all values of t, according to whether Ω has finite measure or not. We define

            W1Lϕ(Ω) = {u Lϕ(Ω) : Dαu Lϕ(Ω),            α ≤ 1}

           W1Eϕ(Ω) = {u Eϕ(Ω) : Dαu Eϕ(Ω),           α ≤ 1}

where α = (α1,…,αN ),|α | = |α1 | + + |αN | and : Dαu denote the distributional derivatives. The space W1Lϕ(Ω) is called the Musielak-Orlicz-Sobolev space. Let

%ϕ,Ω(u) = P|α|≤1%ϕ,Ω(Dαu) and ku k1ϕ,Ω = inf{λ > 0 :

.

These functionals are convex modular and a norm on W1Lϕ(Ω), respectively. Then pair

(W1Lϕ(Ω), ku k1ϕ,) is a Banach space if ϕ satisfies the following condition [6].

There exists a constant        c > 0     such that          inf ϕ(x,1) > c

x∈Ω The space W1Lϕ(Ω) is identified to a subspace of the product Qα≤1Lϕ(Ω) = QLϕ We denote by D (Ω) the Schwartz space of infinitely smooth functions

with compact support in Ω and by D (Ω) the restriction of D (R) on Ω. The space W01Lϕ(Ω) is defined as the σLϕ,ΠEψ) closure of D (Ω) in W1Lϕ(Ω) and the space W01Eϕ(Ω) as the(norm) closure of the Schwartz space D (Ω) in W1Lϕ(Ω). For two complementary Musielak-Orlicz functions ϕ and ψ, we have (See [7]).

  • The Young inequality:

Lϕ(Ω) = {u : Ω → R mesurable :                           %ϕ,(      ) < for some               λ > 0} λ

• The Holder inequality¨ For any Musielak-Orlicz function ϕ, we put

ψ(x,s) = supt0(st ϕ(x,s)).                                                                                    R

ψ is called the Musielak-Orlicz function comple-  Ωu  u kϕ,k|v |kψ,for all mentary to ϕ (or conjugate of ϕ) in the sense of u Lϕ(Ω),v Lψ(Ω)

st ϕ(x,s)+ψ(x,t) for all s,t ≥ 0 , x ∈ Ω.

We say that a sequence of functions un converges to u for the modular convergence in W1Lϕ(Ω) (respectively in W01Lϕ(Ω)) if, for some λ > 0.

un

lim %ϕ,λ

n→∞

The following spaces of distributions will also be used

            W −1Lψ(Ω) = nf ∈        D 0 (Ω) : f = X(−1)αDαfα

α≤1

o

                                    where      fα Lψ(Ω)

and

            W −1Eψ(Ω) = nf ∈        D 0 (Ω) : f = X(−1)αDαfα

α≤1

o

                                    where      fα Eψ(Ω)

2.3    Inhomogeneous Musielak-OrliczSobolev spcaes:

Let Ω be a bounded Lipschitz domain in RN and let

Q = Ω×]0,T [ with some given T > 0.                         let ϕ be a

Musielak-Orlicz function.For each α NN , denote by Dxα the distributional derivative on QT of order α with respect to the variable x RN . The inhomogeneous Musielak-Orlicz-Sovolev spaces of order 1 are defined as follows

W1,xLϕ(Q) = nu Lϕ(Q) : ∀|α |        ≤ 1,           Dxαu Lϕ(Q)o

W1,xEϕ(Q) = nu Eϕ(Q) : ∀|α |       ≤ 1,          Dxαu Eϕ(Q)o

The last is a subspace of the first one, and both are Banach spaces under the norm

X

                                 ku k =          kDxαu kϕ,Q

|α|≤m

We can easily show that they form a complementary system when Ω is a Lipschitz domain. These spaces are considered as subspaces of the product space ΠLϕ(Q) which has (N + 1) copies. We shall also consider the weak topologies σLϕ,ΠEψ) and σLϕ,ΠLψ). If u W1,xLϕ(Q) then the function : t 7→ u(t) = u(t,.) is defined on (0,T ) with values in W1Lϕ(Ω). If, further, u W1,xEϕ(Q) then this function is a W1Eϕ(Ω)-valued and is strongly measurable. Furthermore the following imbedding holds: W1,xEϕ(Q) ⊂ L1(0,T ;W1Eϕ(Ω)). The space W1,xLϕ(Q) is not in general separable, if u W1,xLϕ(Q), we can not conclude that the function u(t) is measurable on (0,T ). However, the scalar function t 7→ u(t) = ku(t)kϕ,is in L1(0,T ). The space W01,xEϕ(Q) is defined as the (norm) closure in W1,xEϕ(Q) of D (Ω). We can easily show that when Ω is a Lipschitz domain then each element u of the closure of D (Ω) with respect of the weaktopology σLϕ,ΠEψ) is limit, in W1,xLϕ(Q), of some subsequence (ui) ∈ D (Ω) for the modular convergence, i.e. there exists λ > 0 such that for all |α | ≤ 1,

               Z ϕ(x,(Dxαui Dxαu)dxdt → 0         as     i →  ∞

             Q                                 λ

, this implies that (ui) converge to u in W1,xLϕ(Q) for the weak topology σLϕ,ΠLψ). Consequently

D (Q)σLϕ,ΠEψ) = D (Q)σLϕ,ΠLψ)

, this space will be denoted by W). Furthermore WEϕ. We have the following complementary system F being the dual space of W01,xEϕ(Q). It is also, except for an isomorphism, the quotient of ΠLψ by the polar set W, and will be denoted by F = W1,xLψ(Q) and it is shown that this space will be equipped with the usual quotient

norm where the inf is taken on all possible decompositions

The space F0 is then given by F0 = W −1,xEψ(Q).

Lemma 2.1 [4]. Let be a bounded Lipschitz domain in RN and let ϕ and ψ be two complementary MusielakOrlicz functions which satisfy the following conditions:

  • There exists a constant c > 0 such that

inf ϕ(x,1) > c             (2.1) x∈Ω

  • A > 0 such that for all x,y ∈ Ω with |x , we have

                                               A         

                           for all       t ≥ 1.          (2.2)

Z

                                                  ϕ(y,1)dx < ∞                       (2.3)

                ∃C > 0     such that      ψ(y,t) ≤ C      a.e.             in

(2.4)

Under this assumptions D (Ω) is dense in Lϕ(Ω) with respect to the modular topology, D (Ω) is dense in

W01Lϕ(Ω) for the modular convergence and D (Ω) is dense in W01Lϕ(Ω) for the modular convergence.

Consequently, the action of a distribution S in W −1(Ω) on an element u of W01Lϕ(Ω) is well defined. It will be denoted by < S,u >.

2.4       Truncation Operator

Tk, k > 0, denotes the truncation function at level k defined on R by Tk(r) = max(−k,min(k,r)). The following abstract lemmas will be applied to the truncation operators.

Lemma 2.2 [4]. Let F : R → R be uniformly Lipschitzian,with F(0) = 0.Let ϕ be an Musielak-Orlicz function and let u(resp.u W1Eϕ(Ω)). Then F(u) ∈ W1Lϕ(Ω)(resp.u ).Moreover,if the set of discontinuity points D of F0 is finite,then

           ∂ F(u) = ( F0(x)∂x∂ui                 a.e. in {x Ω; u(x) < D }

       ∂xi                              0                    a.e. in {x ∈ Ω; u(x) ∈ D }

Lemma 2.3 Suppose that satisfies the segment property and let u. Then, there exists a sequence un ∈ D (Ω) such that

un u for modular convergence in W.

Furthermore, if u  then kun k

(N +1)ku k.

Let Ω be an open subset of RN and let ϕ be a

Musielak-Orlicz function satisfying :

Z

                                            dt = ∞     a.e.     x ∈ Ω               (2.5)

and the conditions of Lemma 2.1. We may assume

without loss of generality that

                         Z 1 ϕx−1(t)dt < ∞      a.e.     x Ω               (2.6)

N+1

                          0         t N

Define a function ϕ: Ω × [0, ∞) by ϕ(x,s) =

R s

dt x ∈ Ω and s ∈ [0, ∞). 0 t N

ϕits called the Sobolev conjugate function of ϕ (see

[1] for the case of Orlicz function).

Theorem 2.1 Let be a bounded Lipschitz domain and let ϕ be a Musielak-Orlicz function satisfying 2.5,2.6 and the conditions of Lemma 2.1. Then

W01Lϕ(Ω) ,Lϕ∗ (Ω)

where ϕis the Sobolev conjugate function of ϕ. Moreover, if φ is any Musielak-Orlicz function increasing essentially more slowly than ϕnear infinity, then the imbedding

W01Lϕ(Ω) ,Lφ(Ω) is compact

Corollary 2.1 Under the same assumptions of theorem

5.1, we have

W01Lϕ(Ω) ,,Lϕ(Ω)

Lemma 2.4 If a sequence un un Lϕ(Ω) converges a.e. to u and if un remains bounded in Lϕ(Ω), then u Lϕ(Ω) and un * u for σ(Lϕ(Ω),Eψ(Ω)).

Lemma 2.5 Let un,u Lϕ(Ω). If un u with respect to the modular convergence, then un * u for σ(Lϕ(Ω),Lψ(Ω)).

See ([8]).

3 Technical lemma

Lemma 3.1 Under the assumptions of lemma 2.1, and by assuming that ϕ(x,t) decreases with respect to one of coordinate of x, there exists a constant c1 > 0 which depends only on such that

                     Z                             Z

                                             ϕ(x, |u |)dx                              (3.1)

Theorem 3.1 Let be a bounded Lipschitz domain and let ϕ be a Musielak-Orlicz function satisfying the same conditions of Theorem 5.1. Then there exists a constant λ > 0 such that

ku k

4 Essential assumptions

Let Ω be an open subset of RN (N ≥ 2) satisfying the segment property,and let ϕ and γ be two MusielakOrlicz functions such that ϕ and its complementary ψ satisfies conditions of Lemma 2.1 and γ ≺≺ ϕ.

bi : Ω × R → R

is a Caratheodory function such that for every´          x ∈ Ω,

(4.1)

bi(x,.) is a strictly increasing C 1(R)-function and bi L(Ω × R) with bi(x,0) = 0. Next for any k > 0, there exists a constant λik > 0 and functions Aik L(Ω) and Bik Lϕ(Ω) such that:

                                          )     and     x       ∂bi∂s(x,s)  ≤ Bik(x)

                                a.e. x ∈ Ω and ∀ |s | ≤ k.                       (4.2)

         A :          → W −1Lψ(QT ) defined by

A(u) = diva(x,t,u, u),where a : Q × R × RN RN is Caratheodory function such that for a.e.´           x ∈ Ω and for

all s ∈ R,ξ,ξ∗ ∈ RN ,ξ , ξ

       (A1)    :       |a(x,t,s,ξ)

 |ξ |))),

                      β > 0,       c(x) ∈ Eψ(Ω), (4.3)
(A2) : (a(x,t,s,ξ) − a(x,s,ξ)(ξ ξ) > 0, (4.4)
(A3) : a(x,t,s,ξ)αϕ(x, |ξ |). (4.5)

Φ(x,s,ξ) : Ω × IR × IRN IRN is a Caratheodory func-´ tion such that

                              |Φi(x,t,s),                      (4.6)

fi : Ω × R × R R is a Caratheodory function with´ f1(x,0,s) = f2(x,s,0) = 0          a.e. x ∈ Ω, s R.                (4.7) and for almost every x ∈ Ω, for every s1,s2 R, sign(si)fi(x,s1,s2) ≥ 0. (4.8)

The growth assumptions on fi are as follows: For each K > 0, there exists σK > 0 and a function FK in L1(Ω) such that

|f1(x,s1,s2)| ≤ FK(x)+σK |b2(x,s2)| (4.9) a.e. in Ω, for all s1 such that |s1 | ≤ K, for all s2 R. For each K > 0, there exists λK > 0 and a function GK in L1(Ω) such that

              |f2(x,s1,s2)|     ≤ GK(x)+λK |b1(x,s1)|,                  (4.10)

for almost every x ∈ Ω, for every s2 such that |s2 | ≤ K, and for every s1 R.

Finally, we assume the following condition on the initial data ui,0: for i=1,2.

ui,0 is a measurable function such that bi(.,ui,0) ∈ L1(Ω), (4.11)

In this paper, for K > 0, we denote by TK : r 7→ min(K,max(r, K)) the truncation function at height K. For any measurable subset E of QT , we denote by meas(E) the Lebesgue measure of E. For any measurable function v defined on Q and for any real number s,χ{v<s} (respectively, χ{v=s}{v>s}) denote the characteristic function of the set {(x,t) ∈ QT ; v(x,t) < s } (respectively, {(x,t) ∈ QT ;v(x,t) = s }, {(x,t) ∈ QT ;v(x,t) > s }).

Definition 4.1 A couple of functions (u1,u2) defined on Q is called a renormalized solution of (4.1)(4.11)if for i = 1,2 the function ui satisfies

TK       and               bi(x,ui) L(0,T ;L1(Ω)),

(4.12)

Z a(x,t,ui, ui)ui dxdt 0 as m +,

{ m≤|ui|≤m+1}

(4.13) For every function S in W2,(R) which is piecewise C1 and such that S0 has a compact support,we have

(x,t,ui, ui))

+S00(ui)a(x,t,ui, ui)ui

+div(S0(ui)φi(x,t,ui)) − S00(ui)φi(x,t,ui)∇ui

                                   +fi(x,u1,u2)S0(ui) = 0,                        (4.14)

                 Bi,S(x,ui)(t = 0) = Bi,S(x,ui,0)           in ,             (4.15)

where Bi,S(r) = R0r bi0(x,s)S0(s)ds.

Due to (4.12), each term in (4.14) has a meaning in

W −1,xLψ(QT )+L1(QT ).

Indeed, if K such that suppS ⊂ [−K,K], the following identifications are made in (4.14)

  • Bi,S(x,ui) ∈       L(QT ),       since      |Bi,S(x,ui)|      ≤

K kAiK kL∞(Ω) kS0 kL∞(R)

  • S0(ui)a(x,t,ui, ui) can be identified with S0(ui)a(x,t,TK(ui), TK(ui)) a.e. in QT . Since indeed |TK(ui)| ≤ K e. in QT , . As a consequence of (4.3) , (4.12) and S0(ui) ∈ L(QT ) , it follows that

S0(ui)a(x,TK(ui), TK(ui)) (Lψ(QT ))N .

  • S0(ui)a(x,t,ui, ui)∇ui can be identified with

S0(ui)a(x,t,TK(ui), TK(ui))∇TK(ui) a.e. in QT .with (4.2) and (4.12) it has

S0(ui)a(x,t,TK(ui), TK(ui))TK(ui) L1(QT )

  • S0(uii(ui) and S00(uii(ui)∇ui respectively identify with S0(uii(TK(ui)) and S00(ui)Φ(TK(ui))∇TK(ui). In view of the properties of S and (4.6), the functions S0,S00 and Φ ◦ TK are bounded on R so that (4.12) implies that S0(uii(TK(ui)) ∈ (L(QT ))N and S00(uii(TK(ui))∇TK(ui) ∈ (Lψ(QT ))N .
  • S0(ui)fi(x,u1,u2) identifies with S0(ui)f1(x,TK(u1),u2)

a.e. in QT

(or S0(ui)f2(x,u1,TK(u2)) a.e. in QT ). Indeed, since |TK(ui)| ≤ K a.e. in QT , assumptions (4.9) and (4.10) and using (4.12) and of S0(ui) ∈ L(Q), one has

S0(u1)f1(x,TK(u1),u2) L1(QT ) and S0(u2)f2(x,u1,TK(u2)) L1(QT ).

As consequence, (4.14) takes place in D0(QT ) and that

Due to the properties of S and (4.2)

                                    Bi,S.             (4.17)

Moreover (4.16) and (4.17) implies that Bi,S(x,ui) ∈ C0([0,T ],L1(Ω)) so that the initial condition (4.15) makes sense.

5 Existence result

We shall prove the following existence theorem

Theorem 5.1 Assume that (4.1)(4.11) hold true. There at least a renormalized solution (u1,u2) of Problem (1.1).

We divide the prof in 5 steps.

Step 1: Approximate problem.

Let us introduce the following regularization of the data: for n > 0 and i = 1,2

1 bi,n(x,s) = bi(x,Tn(s))+           s          s ∈ R,   (5.1) n

an(x,t,s,ξ) = a(x,t,Tn(s)) a.e. in Ω, s R, ξ RN , (5.2)

Φi,n(x,t,s) = Φi,n(x,t,Tn(s))           a.e.      (x,t) ∈ QT ,       s IR.

(5.3)

f1,n(x,s1,s2) = f1(x,Tn(s1),s2)                   a.e. in Ω, s1,s2 R,

(5.4)

f2,n(x,s1,s2) = f2(x,s1,Tn(s2))                   a.e. in Ω, s1,s2 R,

(5.5)

           ui,,bi,n(x,ui,0n) → bi(x,ui,0)          inL1(Ω)

                                      as n tends to +∞                              (5.6)

Let     us    now     consider     the     regularized        problem

∂bi,n∂t(x,ui,n) − div(an(x,ui,n, ui,n)) − divi,n(x,t,ui,n))

                 +fi,n(x,u1,n,u2,n) = 0         in QT , (5.7)
                   ui,n = 0       on (0,T ) × , (5.8)
bi,n(x,ui,n)(t = 0) = bi,n(x,ui,0n)               in Ω. (5.9)

In view of (5.1), for i = 1,2, we have

∂bi,n(x,s) ≥ 1,           |bi,n(x,s)|  ≤ max |bi(x,s)| +1         ∀s ∈ R,

        ∂s             n                            |s|≤n

In view of (4.9)-(4.10), f1,n and f2,n satisfy: There exists Fn L1(Ω),Gn L1(Ω) and σn > 0n > 0, such

that

       |f1,n(x,s1,s2)|     ≤ Fn(x)+σn max|s|≤n |bi(x,s)|

a.e. in x , s1,s2 R,

       |f2,n(x,s1,s2)|     ≤ Gn(x)+λn max|s|≤n |bi(x,s)|

a.e. in x ∈ Ω, s1,s2 R. As a consequence, proving the existence of a weak solution ui,n ) of

(5.7)-(5.9) is an easy task (see e.g. [9]).

Step2:A priori estimates.

Let t ∈ (0,T ) and using Tk(ui,n)χ(0,t) as a test function in problem (5.7), we get:

RΩBni,k(x,ui,n(t))dx+RQt an(x,t,ui,n, ui,n)∇Tk(ui,n)dxdt

Z

                +             φi,n(x,t,ui,n)∇Tk(ui,n)dxdt                       (5.10)

Qt

                Z                                         Z

            +           fi,nTk(ui,n)dxdt ≤            Bni,k(x,ui,0n)dx,

Qt                n (x,r) = Z r ∂bi,n(x,s)Tk(s)ds. where Bi,k                 ∂s

0

Due to definition of Bni,k we have:

     Z                                              Z

            Bni,k(x,ui,n(t))dx λ2n Ω |Tk(ui,n)|2dx,       k > 0,

(5.11)

and

             Z                                       Z

                    Bni,k(x,ui,0n)dx k          |bi,n(x,ui,0n)|dx        (5.12)

                         ≤ k ||bi(x,ui,0)||L1(Ω),      k > 0.

In view of (4.8), we have RQt fi,nTk(ui,n)dxdt ≥ 0 Also, we obtain with Young inequality:

Z

φi,n(x,t,ui,n)∇Tk(ui,n)dxdt Qt

Z

                 =                      φi,n(x,t,ui,n)∇Tk(ui,n)dxdt

{|ui,n|≤k} Z

1

                  ≤                  ψ(x, α0i φi,n(x,t,ui,n))dxdt

{|ui,n|≤k}

Z dxdt

Z

1

                   ≤                   ψ(x,          (x, |k |))dxdt

                          {|ui,n|≤k}               α0i

Z

dxdt

Z

1

                   ≤                   ψ(x,          (x, |k |))dxdt

                          {|ui,n|≤k}               α0i

Z dxdt

then

Z

φi,n(x,t,Tk(ui,n))∇Tk(ui,n)dxdt

Qt

Z

                 ≤ Ci,k +α0i                    ϕ(x, Tk(ui,n))dxdt                 (5.13)

Qt

We conclude that λ Z |Tk(u )|2dx +αi Z ϕ(x, Tk(ui,n)dxdt

i,n

            2 Ω                                                          Qt

Z

             ϕ(x, Tk(ui,n))dtdx +Ci,k +k ||bi(x,ui,0n)||L1(Ω)

Qt

Then

λ ZZ

         |Tk               ϕ(x, Tk(ui,n))dtdx Ci.k

2 ΩQt

Choosing α0i such that

0 < α0i < min(1i) we get

Z ϕ(x, Tk(ui,n))dxdt Ci.k           (5.14)

Qt

Then, by (5.14), we conclude that Tk(ui,n) is bounded in W1,xLϕ(QT ) independently of n and for any k ≥ 0, so there exists a subsequence still denoted by un such that

                                        Tk(ui,n) → ψi,k                                            (5.15)

weakly in W01,xLϕ(QT ) for σLϕ,ΠEψ) strongly in Eϕ(QT ) and a.e in QT .

Since Lemma(3.1)and (5.14),we get also,

                  ϕ(x,k) meas {|ui,n | > k }  ∩ BR × [0,T ]

Z T Z ≤ ϕ(x,Tk(ui,n))dxdt

       0          {|ui,n|>k}∩BR

Z

≤             ϕ(x,Tk(ui,n))dxdt

QT

Z

diamQT                      ϕ(x, Tk(ui,n))dxdt

QT

Then

                   {|ui,n | > k }     ∩ BR × [0,T ] ≤ diamQT .Ci.k

meas ϕ(x,k)

Which implies that:

     lim     meas {|ui,n | > k }   ∩ BR × [0,T ]           = 0. uniformly

k→+∞

with respect to n.

Now    we    turn    to    prove    the    almost    every     con-

vergence of ui,n bi,n(x,ui,n)                and convergence of ai,n(x,t,Tk(ui,n), Tk(ui,n)).

Proposition 5.1 Let ui,n be a solution of the approximate problem, then:

                          ui,n ui         a.e in     QT .

bi,n(x,ui,n) → bi(x,ui)           a.e in     QT

(5.16)

bi(x,ui) L(0,T ,L1(Ω)).

an(x,t,Tk(ui,n), Tk(ui,n)) * Xi,k

(5.17)
        in       (Lψ(QT ))N for         σLψ,ΠEϕ) (5.18)

for some Xi,k (Lψ(QT ))N

Z

lim→+∞n→lim+∞            m≤|ui,n|≤m+1ai(x,t,ui,n, ui,n)∇ui,ndxdt = 0

m

(5.19)

Proof of (5.16) and (5.17):

Consider now a function non decreasing gk C2(IR) such that gk(s) = s for |s and gk(s) = k for |s | ≥ k. Multiplying the approximate equation by g

get

       ∂Bi,nk,g(x,ui,n)                                                0

     ∂t   div an(x,t,ui,n, ui,n)gk(ui,n)

                     +an(x,t,ui,n,ui,n                                (5.20)

                                       0                          00

+ div φi,n(x,t,ui,n)gk(ui,n) − gk (ui,n)φi,n(x,t,ui,n)∇ui,n

                                    0                                                 0

+fi,ngk(un) = 0 in D (QT ) i,n Z z ∂bi,n(x,s) 0

where Bk,g(x,z) =        0 ∂s gk(s)ds.

Using (5.20),we can deduce that gk(ui,n) is bounded in W01,xLϕ(QT ) and ∂t is bounded in L1(QT )+

W −1,xLψ(QT ) independently of n. thanks to (4.6) and properties of gk, it follows that

Z

                        |         φi,n(x,t,un)gk0 (ui,n)dxdt |

QT

Z

               ≤ kgk0 k∞                  ci(x,t)ψ−1ϕ(x,Tk(ui,n))dxdt

QT

Z

            ≤ kgk0 k         ci(x,t)dxdtCi,k1

QT By (5.13), we get

Z

                  |          gk00(ui,n)φi,n(x,t,ui,n)∇ui,ndxdt |

QT

Z

       ≤  kgk0 k∞Ci,k +c0i                    ψ(x, Tk(ui,n))dxdtCi,k2

QT

where Ci,k1 and Ci,k2 constants independently of n. we conclude that ∂gk∂t(ui,n) is bounded in L1(QT ) + W −1,xLψ(QT ) for k < n. which implies that gk(ui,n) is compact in L1(QT ).Due to the choice of gk, we conclude that for each k,the sequence Tk(ui,n) converges almost everywhere in QT ,which implies that the sequence ui,n converge almost everywhere to some measurable function ui in QT .

Then by the same argument in [9], we have

                                      ui,n ui a.e. QT ,                            (5.21)

where ui is a measurable function defined on QT . and bi,n(x,ui,n) → bi(x,ui) a.e. in QT by (5.15) and (5.21) we have

                                       Tk(ui,n) → Tk(ui)                            (5.22)

weakly in W01,xLϕ(QT ) for σLϕ,ΠEψ) strongly in Eϕ(QT ) and a.e in QT .

We now show that bi(x,ui) ∈ L(0,T ;L1(Ω)). Indeed using 1ε Tε(ui,n) as a test function in (5.7),

1 Z     ε (x,ui,n)(t)dx + 1 Z      an(x,ui,n, ui,n)∇Tε(ui,n)dxdt bi,n

ε Ω                                                             ε    QT

     1 Z                                                               1 Z

−  Φi,n(x,t,ui,n)∇Tε(ui,n)dxdt +                          fi,n(x,u1,n,u2,n)Tε(ui,n) ε        QT                   ε              QT

1 Z

(x,ui,0n)dx,

(5.23)

for    almost    any    t    in    (0,T ).         Where,    bi,nε (r)    =

R r    0

0 bi,n(s)Tε(s)ds. Since an satisfies (4.5) and fi,n satisfies (4.8), we get

       R           bε (x,ui,n)(t)dx ≤ RQT Φi,n(x,t,ui,n)∇Tε(ui,n)dxdt

i,n

Z

                                  +         bi,nε (x,ui,0n)dx,                       (5.24)

By Young inequality and (4.6), we get

Z                                                               Z

             Φi,n(x,t,ui,n)Tε(ui,n)dxdt ≤                        ψ(x,Φi,n(x,t,ui,n))dxdt

QT                                                                                                |ui,n|≤ε

Z

                         +                  ϕ(x, Tε(ui,n))dxdt

|ui,n|≤ε

Z

                                                .meas(QT )+                  (ϕ(x, Tε(ui,n))dxdt

|ui,n|≤ε

(5.25)

Using the Lebesgue’s Theorem and ϕ(x, Tε(ui,n)) ∈

W01,xL(QT ) in second term of the left hand side of the

(5.25) and Letting ε → 0in (5.24)we obtain

Z

                |bi,n(x,ui,n)(t)| dx ≤     kbi,n(x,ui,0n)kL1()                 (5.26)

Ω for almost t ∈ (0,T ). thanks to (5.6) , (5.16), and passing to the limit-inf in (5.26), we obtain bi(x,ui) ∈ L(0,T ;L1(Ω)). Proof of (5.18) :

Following the same way in([10]),we deduce that an(x,t,Tk(ui,n), Tk(ui,n)) is a bounded sequence in (Lψ(QT ))N ,and we obtain (5.18).

Proof of (5.19) :

Multiplying the approximating equation (5.7) by the test function θm(ui,n) = Tm+1(ui,n) − Tm(ui,n)

Z

Bi,m(x,ui,n(T ))dx +

Z

an(x,t,ui,n, ui,n)∇θm(ui,n)dxdt

QT

Z

               +              φi,n(x,t,ui,n)θm(ui,n)dxdt                    (5.27)

QT

              Z                                           Z

           +            fi,nθm(ui,n)dxdt ≤             Bi,m(x,ui,0n)dx,

                 QT                                                              

where Bi,mds.

By (4.6),we have

Z

φi,n(x,t,ui,n)∇θm(ui,n)dxdt

QT

Z

ψ(x,(x, |ui,n |))dxdt m≤|ui,n|≤m+1

Z

+      ϕ(x, θm(ui,n))dxdt m≤|ui,n|≤m+1

Also RQT fi,nθm(ui,n)dxdt ≥ 0in view of (4.8).Then, The same argument in step 2 ,we obtain,

Z

ϕ(x, ui,n)dxdt

QT

CiZ                                       ψ(x, β            −1ϕ(x, |ui,n |))dxdt ψ

                         m≤|ui,n|≤m+1

                                    Z

                                 +          Bi,m(x,ui,0n)dx

Where Ci = αi1where 0 .

passing to limit as n → +∞ ,since the pointwise convergence of ui,n and strongly convergence in L1(QT ) of Bi,m(x,ui,0n) we get

Z

→lim+∞        QT ϕ(x, ui,n)dxdt n

Z

Ci           ψ(x,(x, |ui |))dxdt m≤|ui|≤m+1

                                     Z

                                  +         Bi,m(x,ui,0)dx

By using Lebesgue’s theorem and passing to limit as m → +∞, in the all term of the right-hand side, we get Z

lim→+∞n→lim+∞ m≤|ui|≤m+1ϕ(x, ui,n)dxdt = 0 (5.28) m and the other hand, we have

Z

lim→+∞n→lim+∞           QT φi,n(x,t,ui,n)θm(ui,n)dxdt m

Z

≤ lim→+∞n→lim+∞            m≤|ui|≤m+1ϕ(x, θm(ui,n))dxdt m

Z

+ lim→+∞n→lim+∞                 m≤|ui,n|≤m+1ψ(x,φi,n(x,t,ui,n))dxdt m

Using the pointwise convergence of ui,n and by Lebesgue’s theorem,in the second term of the right side ,we get

Z

             lim+∞         m≤|ui,n|≤m+1ψ(x,φi,n(x,t,ui,n))dxdt

n

Z

=    ψ(x,φi(x,t,ui))dxdt, m≤|ui|≤m+1

and also ,by Lebesgue’s theorem

Z

        lim+∞         m≤|ui|≤m+1ψ(x,φi(x,t,ui))dxdt = 0            (5.29)

m we obtain with (5.28) and (5.29),

Z

lim→+∞n→lim+∞                QT φi,n(x,t,ui,n)∇θm(ui,n)dxdt = 0 m

then passing to the limit in (5.27), we get the (5.19). Step 3: Let υi,j ∈ D (QT ) be a sequence such that υi,j ui in W01,xLϕ(QT ) for the modular convergence. This specific time regularization of Tk(υi,j) (for fixed k ≥ 0) is defined as follows. µ

Let (αi,0)µ be a sequence of functions defined on Ω such that

           )     for allµ > 0            (5.30)

µ

kαi,0 kL∞(Ω) ≤ k for allµ > 0.

µ

and αi,0 converges to Tk(ui,0) a.e. in Ω andµ1 kαi,µ0 kϕ,converges to 0 µ → +∞. For k ≥ 0 and µ > 0, let us consider the unique solution (Tk) of the monotone problem:

       (Tk(υi,j))µ                                                                                                  0

 +µ((Tk(υi,j))µ Tk(υi,j)) = 0 in D (Ω),

∂t

(5.31)

µ

(Tk(υi,j))µ(t = 0) = αi,0 in Ω. (5.32) Remark that due to

(Tk(υi,j))µ W1,x

                         ∂t       0        Lϕ(QT )                  (5.33)

We just recall that,

(Tk(υi,j))µ Tk(ui)             a.e. in

(Tk(υi,j))µ → (Tk(ui))µ

     QT ,      weakly∗

in      W01,xLϕ(QT )

for fixed K ≥ 0:

lim Z ∂bi,Sm(ui,n) ,Sm0 (ui,n)Wi,j,µn E ≥ 0, D liminf lim

µ→+∞ j→+∞n→+∞          QT                   ∂t

in L(QT ),                                                                                                (5.41)

lim     lim     lim           S

(5.34)                        →+∞       →+∞ZQT            0 (ui,ni,n(x,t,ui,n)∇Wi,j,µn      = 0,

µ→+∞j                n                              n

(5.42)

(5.35)                                          Z

µ→lim+∞j→lim+∞n→lim+∞ QT Sm00 (ui,n)Wi,µn Φi,n(x,t,ui,n)∇ui,n = 0,

(5.43)

Z

lim           lim           lim           lim          S00 (u      )W n             a (x,t,u    , u         )∇u          = 0

for the modular convergence as         j → +∞.
T

              (Tk(ui))µ Tk(ui)       in       W01,xLϕ(QT )              (5.36)

for the modular convergence as        µ → +∞.

µ

||(Tk(υi,j))µ ||L∞(QT ) ≤ max(||(Tk(ui))||L∞(QT ), ||α0 ||L∞(Ω)) ≤ k

(5.37)

µ > 0 , k > 0. Now, we introduce a sequence of increasing C(R)-functions Sm such that, for any

m ≥ 1

(5.44)

Z

lim        lim     lim              fi,n(x,u1,n,u2,n)S0                             n

µ→+∞j→+∞n→+∞              QT                                                         m(ui,n)Wi,j,µ = 0.

(5.45)

Z

limsup a(x,t,ui,n, TK(ui,n))TK(ui,n)dxdt n→+∞ QT

(5.46)

Z

≤              Xi,K TK(ui)dxdt.                      (5.47)

QT

R

QT [a(x,t,Tk(ui,n), Tk(ui,n)) − a(x,t,Tk(ui,n), Tk(ui))]

[∇T (u      ) −   ∇T (u )]dxdt → 0.               (5.48)

m      Q        m       i,n            i,j,µ n                     i,n            i,n            i,n

k           i,n                    k                      i Sm(r) = r for |r |   ≤ m,,

Through setting, for fixed K ≥ 0,

Lemma 5.1

Z ∂bi,n(x,ui,n),Sm0 (ui,n)Wi,j,µn Edxdt (n,j,µ,m), D

QT                     ∂t

(5.38)      Proof of (5.41):

kS.

Wi,j,µn       = TK(ui,n)−TK(υi,j)µ             and        Wi,µn = TK(ui,n)−TK(ui)µ                                                                                                                                               (5.49)

(5.39)

we obtain upon integration,

Z           D∂bi,Sm(ui,n)        n       Edxdt

            ∂t ,Wi,j,µ

QT

Z

+               Sm0 (ui,n)an(x,uin, ui,n)∇Wi,j,µn    dxdt

QT

Z

+            Sm00 (ui,n)Wi,j,µn   an(x,ui,n, ui,n)∇ui,n dxdt

        ZQT                                                                                                                          (5.40)

+ Φi,n(x,t,ui,n)Wi,j,µn                          dxdt

QT

Z

+               Sm00 (ui,n)Wi,j,µn Φi,n(x,t,ui,n)∇ui,n dxdt

QT

Z

+               fi,n(x,u1,n,u2,n)Sm0 (ui,n)Wi,j,µn      dxdt = 0

QT

Next we pass to the limit as n tends to +∞ , j tends to +∞, µ tends to +∞ and then m tends to +∞, the real number K ≥ 0 being kept fixed. In order to perform this task we prove below the following results See [23]. Proof of (5.42):

If we take n > m+1, we get

φi,n(x,t,ui,n)Sm0 (ui,n) = φi(x,t,Tm+1(ui,n))Sm0 (ui,n) Using (4.6), we have:

ψ(φi,n(x,t,Tm(x,t,Tm+1(ui,n)))

≤ (m+1)ψ(kc(x,t)kL(QT )ψ−1M(m+1))

Then φi,n(x,t,un)Sm(ui,n) is bounded in Lψ(QT ), thus, by using the pointwise convergence of ui,n and Lebesgue’s theorem we obtain φi,n(x,t,ui,n)Sm(ui,n) → φi(x,t,ui)Sm(ui) with the modular convergence as n → +∞, then φi,n(x,t,ui,n)Sm(ui,n) → φ(x,t,ui)Sm(ui) for σ(QLψ,QLϕ).

In the other hand ∇Wi,j,µn = ∇Tk(ui,n) − ∇(Tk(υi,j))µ for converge to ∇Tk(ui) − ∇(Tk(υi,j))µ weakly in (Lϕ(QT ))N ,then

Z

                            φi,n(x,t,ui,n)Sm(ui,n)∇Wi,j,µn       dxdt

QT

Z

                  →              φi(x,t,ui)Sm(ui)∇Wi,j,µ dxdt

QT

as n +.

By using the modular convergence of Wi,j,µ as j → +∞ and letting µ tends to infinity, we get (5.42).

Proof of (5.43):

For n > m +1 > k , we have ∇ui,nS

a.e. in QT . By the almost every where convergence of ui,n we have Wi,j,µn Wi,j,µ in L∞(QT ) weak-

* and since the sequence (φi,n(x,t,Tm+1(ui,n)))n converge strongly in Eψ(QT ) then

φi,n(x,t,Tm+1(ui,n)) Wi,j,µn                     φi(x,t,Tm+1(ui)) Wi,j,µ

converge strongly in Eψ(QT )as n → +∞.By virtue of

Tm+1(un) →            ∇Tm+1(ui) weakly in (Lϕ(QT ))N as n

+∞ we have

Z

                           φi,n(x,t,Tm+1(ui,n))∇ui,nSm00 (ui,n)Wi,j,µn           dxdt

m≤|ui,n|≤m+1

Z

→            φ(x,t,ui))∇uiWi,j,µ dxdt m≤|ui|≤m+1 as n +

with the modular convergence of Wi,j,µ as j → +∞ and letting µ → +∞ we get (5.43).

Proof of (5.44):

For any m ≥ 1 fixed, we have

Z            00                   n                      dxdt

Sm(ui,n)an(x,t,ui,n, ui,n)∇ui,nWi,j,µ

QT

Z

≤ kSm00 kL∞(R) kWi,j,µn kL∞(QT )                                               an(x,t,ui,n, ui,n)

{m≤|ui,n|≤m+1}

×   ∇ui,n dxdt,

for any m ≥ 1, and any µ > 0. In view (5.37) and (5.38), we can obtain

Z

limsup    Sm00 (ui,n)an(x,t,ui,n, ui,n)∇ui,nWi,j,µn                        dxdtn→+∞                      QT

Z

≤ 2Klimsup                                           an(x,t,ui,n, ui,n)∇ui,n dxdt,

             n→+∞          {m≤|ui,n|≤m+1}

(5.50)

for any m ≥ 1. Using (5.19) we pass to the limit as m → +∞ in (5.50) and we obtain (5.44).

Proof of (5.45):

For fixed n ≥ 1 and n > m+1, we have

f1,n(x,u1,n,u2,n)Sm0 (u1,n) = f1(x,Tm+1(u1,n),Tn(u2,n))Sm0 (u1,n), f2,n(x,u1,n,u2,n)Sm0 (u2,n)

= f2(x,Tn(u1,n),Tm+1(u2,n))Sm0 (u2,n),

In view (4.9),(4.10),(5.22) and Lebesgue’s the theorem allow us to get, for

Z

        n→lim+∞      QT fi,n(x,u1,n,u2,n)Sm0 (ui,n)Wi,j,µn        dxdt

Z

                    =            fi(x,u1,u2)Sm0 (ui)Wi,j,µ dxdt

QT

Using (5.35), we follow a similar way we get as j

+∞,

Z

               →lim+∞        QT fi(x,u1,u2)Sm0 (ui)Wi,j,µ dxdt

j

Z

        =                fi(x,u1,u2)Sm0 (ui)(TK(ui) TK(ui)µ)dxdt

QT we fixed m > 1, and using (5.36), we have

Z

µ→lim+∞           QT fi(x,u1,u2)Sm0 (ui)(TK(ui) − TK(ui)µ)dxdt = 0

Then we conclude the proof of (5.45).

Proof of (5.46):

If we pass to the lim-sup when n ,j and µ tends to +∞ and then to the limit as m tends to +∞ in (5.40). We obtain using (5.41)-(5.45), for any K ≥ 0,

Z

mlim+limsupµ→+∞ limsupj→+∞ limsupn→+∞ QT Sm0 (ui,n)an(x,t,ui,n, ui,n)

                        ∇TK(ui,n) −      ∇TK(υi,j)µ dxdt ≤ 0.

Since

Sm0 (ui,n)an(x,t,ui,n, ui,n)∇TK(ui,n)

= an(x,t,ui,n, ui,n)∇TK(ui,n) for n > K and K m. Then, for K m,

Z

limsup an(x,t,ui,n, ui,n)∇TK(ui,n)dxdt n→+∞ QT

Z

      ≤ m              µ→+∞                  j→+∞             n                      +∞                 QT Sm0 (ui,n)             (5.51)

an(x,ui,n, ui,n)∇TK(υi,j)µ dxdt.

Thanks to (5.38), we have in The right hand side of

(5.51), for n > m+1,

Sm0 (ui,n)an(x,t,ui,n, ui,n)

0

= Sm(ui,n)a x,t,Tm+1(ui,n), Tm+1(ui,n) a.e. in QT .

Using (5.18), and fixing m ≥ 1, we get

Sm0 (ui,n)an(ui,n, ui,n) * Sm0 (ui)Xi,m+1 weakly in (Lψ(QT ))N .

when n → +∞ .

We pass to limit as j → +∞ and µ → +∞, and using

(5.35)-(5.36)

Z

limsuplimsuplimsup    Sm0 (ui,n))an(x,t,ui,n µ→+∞         j→+∞            n→+∞          QT

,ui,n))∇TK(υi,j)µ dxdt

Z

          =             Sm0 (ui)Xi,m+1 ∇TK(ui)dxdt

QT

Z

          =             Xi,m+1 ∇TK(ui)dxdt

QT

(5.52)

where K m, since Sm0 (r) = 1 for |r |   ≤ m.                                             Since (1.1), (4.4) and (5.22), imply that the function

On the other hand, for K m, we have                                                     aK(x,s,ξ) is continuous and bounded with respect to

s. Then we conclude that (5.57).

a x,t,TmProof of (5.58):

Using (4.5) and (5.48), for any K ≥ 0 and any T 0 < T ,

= a x,t,TK,                                                 we have

a.e. in QT . Passing to the limit as n → +∞, we obtain                            ha(x,t,TK(ui,n, TK(ui,n)) − a(x,t,TK(ui,n), TK(u))i

Xi,m+1χ{|ui|<K} = Xi,Kχ{|ui|<K}                       a.e. in QT −{|ui | = K } for K n.

(5.53)                                 × hTK(ui,n) −    ∇TK(ui)i → 0                 (5.60)

Then

TK(ui) = XK TK(ui)         a.e. in QT .          (5.54)           strongly inOn the other hand with (5.22), (5.18), (5.56) andL1(QT 0 ) as n → +∞ .

Xm+1

(5.57), we get Then we obtain (5.46).

Proof of (5.48):                                                                                                                                                     

Let K ≥ 0 be fixed. Using (4.5) we have                                                                     a x,t,TK(ui,n), TK(ui,n) TK(ui)

Z

h                                                                                               i

a(x,t,TK(ui,n), TK(ui,n)) − a(x,t,TK(ui,n), TK(ui))

QT                                                                                                                                                                                                         * a x,t,TK(ui), TK(ui) TK(ui)

h                                     i

TK(ui,n) −         ∇TK(ui) dxdt ≥ 0,

(5.55)       weakly in L1(QT ),

In view (1.1) and (5.22), we get

 

a x,t,T (u          ), T (u ) ∇T (u       )

a(x,t,TK(ui,n), TK(ui)) a(x,t,TK(ui), TK(ui))                      a.e. in

as n → +∞, and by (4.2) and Lebesgue’s theorem, we obtain

a x,t,TK(ui,n), TK(ui) a x,t,TK(ui), TK(ui)

(5.56)

strongly in (Lψ(QT ))N . Using (5.46), (5.22), (5.18) and (5.56), we can pass to the lim-sup as n → +∞ in

(5.55) to obtain (5.48).

To finish this step, we prove this Lemma: Lemma 5.2 For i = 1,2 and fixed K ≥ 0, we have

              Xi,K = a xt,,TK(ui), TK(ui)             a.e. in Q.          (5.57)

Also, as n +,

  • x,t,TK* a x,t,TK(ui),DTK

(5.58)

weakly in L1(QT ).

Proof of (5.57): It’s easy to see that an(x,t,TK(ui,n)) = a(x,t,TK(ui,n)) = aK(x,t,TK(ui,n))

a.e. in QT for any K ≥ 0, any n > K and any ξ RN .

In view of (5.18), (5.48) and (5.56) we obtain

               Z           

→lim+∞                    QT aK x,t,TK(ui,n), TK(ui,n) ∇TK(ui,n)dxdt n

Z

     =             Xi,K TK(ui)dxdt.

QT

(5.59)

QT ,                             K        i,n              K        i               K        i,n

* a x,t,TK(ui), TK(ui) TK(ui) weakly in L1(QT ),

a x,t,TK(ui,n), TK(ui) ∇TK(ui)

a x,t,TK(ui), TK(ui) TK(ui),

strongly in L1(Q), as n → +∞. It’s results from (5.60), for any K ≥ 0 and any T 0 < T ,

a x,t,TK(ui,n), TK(ui,n) ∇TK(ui,n)

                      ,

                       * a x,t,TK(ui), TK(ui) ∇TK(ui)                       (5.61)

weakly in L1(QT 0 ) as n → +∞.then for T 0 = T , we have (5.58). Finally we should prove that ui satisfies (4.13).

Step 4:Pass to the limit. we first show that u satisfies (4.13)

Z

a(x,t,ui,n, ui,n)∇ui,n dxdt

m≤|ui,n|≤m+1}

      Z                                      

= an(x,t,ui,n, ui,n) ∇Tm+1(ui,n) − ∇Tm(ui,n) dxdt QT

      Z          

=                           an x,t,Tm+1(ui,n), Tm+1(ui,n) ∇Tm+1(ui,n)dxdt

QT

          Z          

−    an x,t,Tm(ui,n), Tm(ui,n) ∇Tm(ui,n)dxdt QT

  1. Aberqi / Advances in Science, Technology and Engineering Systems Journal Vol. 1, No. 1, XX-YY (2016)

for n > m +1. According to (5.58), one can pass to the limit as n → +∞ ; for fixed m ≥ 0 to obtain

Z

       lim+∞        m≤|ui,n|≤m+1} an(x,t,ui,n, ui,n)∇ui,n dxdt

n

            Z      

        =               a x,t,Tm+1(ui), Tm+1(ui) Tm+1(ui)dxdt

Q

                Z      

−    a x,t,Tm(ui), Tm(ui) Tm(ui)dxdt Q

Z

=    a(x,t,ui, ui)∇ui dxdt m≤|ui|≤m+1}

(5.62) Pass to limit as m tends to +∞ in (5.62) and using

(5.19) show that ui satisfies (4.13).

Now we shown that ui to satisfy (4.14)and (4.15). Let S be a function in W2,(R) such that S0 has a compact support. Let K be a positive real number such that suppS0 ⊂ [−K,K]. the Pointwise multiplication of the approximate equation (1.1) by S0(ui,n) leads to

0

    − div S (ui,n)an(x,ui,n, ui,n) ∂t

+S00(ui,n)an(x,ui,n, ui,n)∇ui,n

                     0                                                                                          (5.63)

− div S (ui,ni,n(x,t,ui,n)

+S00(ui,ni,n(x,t,ui,n)∇ui,n

= fi,n(x,u1,n,u1,n)S0(ui,n)

in D0(QT ), for i = 1,2.

Now we pass to the limit in each term of (5.63).

Limit of ∂Bni,S∂t(ui,n): Since∞   Bn (ui,n) converges to Bi,S(ui) i,S

a.e. in QT and in L (QT ) weak ? and S is bounded

D0(QT ) as n tends to +∞.  

 

0

Limit        of           div S (ui,n)an(x,t,ui,n, ui,n) :

suppS0 ⊂ [−K,K], for n > K, we have

Since

∂Bni,S(ui,n)

and continuous. Then           ∂t                                      converges toin

S0(ui,n)an(x,t,ui,n, ui,n)

0

= S (ui,n)an x,t,TK(ui,n), TK(ui,n)

a.e. in QT . Using the pointwise convergence of ui,n

, (5.38),(5.18) and (5.57), imply that

0

S (ui,n)an x,t,TK(ui,n), TK(ui,n)

0

* S (ui)a x,t,TK(ui), TK(ui)

weakly in (Lψ(QT ))N , for σLψ,ΠEϕ) as n → +∞, since S0(ui) = 0 for |ui | ≥ K a.e. in QT . And

        0                                                                                     0

S (ui)a x,t,TK(ui), TK(ui) = S (ui)a(x,t,ui, ui)

                                           a.e. in       QT .

Limit   of            S00(ui,n)an(x,t,ui,n, ui,n)∇ui,n.             Since suppS00 ⊂ [−K,K], for n > K, we have

S00(ui,n)an(x,t,ui,n, ui,n)∇ui,n

= S00(ui,n)an x,t,TK(ui,n), TK(ui,n) ∇TK(ui,n)                    a.e. in QT .

The pointwise convergence of S00(ui,n) to S00(ui) as n → +∞, (5.38) and (5.58) we have

S00(ui,n)an(x,t,ui,n, ui,n)∇ui,n

                       00              

* S (ui)a x,t,TK(ui), TK(ui) ∇TK(ui) weakly in L1(QT ), as n → +∞, and

                    00              

S (ui)a x,t,TK(ui), TK(ui) TK(ui)

                    = S00(ui)a(x,t,ui, ui)∇ui              a.e.in QT .

Limit of S0(ui,ni,n(x,t,ui,n): We have

S0(ui,ni,n(x,t,ui,n)

= S0(ui,ni,n(x,t,TK(ui,n))

a.e.in QT , Since suppS0 ⊂ [−K,K].Using (4.5), (5.24) and (5.16), it’s easy to see that

S0(ui,ni,n(x,t,ui,n) * S0(uii(x,t,TK(ui)) weakly for σLψ,ΠLϕ) as n → +∞. And S0(uii(x,t,TK(ui)) =

S0(uii(x,t,ui) a.e. in QT .

Limit      of       S00(ui,ni,n(x,t,ui,n)∇ui,n:          Since    S0       ∈

W1,(R)         with      suppS0          ⊂       [−K,K],        we     have

S00(ui,ni,n(x,t,ui,n)∇ui,n = Φi,n(x,t,TK(ui,n))∇S0(TK(ui,n)) a.e. in QT . The weakly convergence of truncation allows us to prove that

S00(ui,ni,n(x,t,ui,n)∇ui,n * Φi(x,t,ui)∇S0(ui), strongly in L1(QT ).

Limit of fi,n(x,u1,n,u2,n)S0(ui,n): Using (4.9), (4.10),

(5.4) and (5.5), we have

fi,n(x,u1,n,u2,n)S0(ui,n) → fi(x,u1,u2)S0(ui) strongly in

L1(QT ), as n → +∞.

It remains to show that for i=1,2 BS(x,ui) satisfies the initial condition (4.15).

To this end, firstly remark that, in view of the definition of Sϕ0 , we have Bϕ(x,ui,n) is bounded in L(QT ).

∂Bϕ(x,ui,n)

Secondly, by (5.41) we show that                   is

∂t

bounded in L1(QT ) + W −1,xLψ(QT )). As a consequence, an Aubin’s type Lemma (see e.g., [11], Corollary 4) implies that Bϕ(x,ui,n) lies in a compact set of

C0([0,T ];L1(Ω)) .

It follows that, on one hand,Bϕ(x,ui,n)(t = 0) converges to Bϕ(x,ui)(t = 0) strongly in L1(Ω). On the order hand, the smoothness of Bϕ imply that Bϕ(x,ui,n)(t = 0) converges to Bϕ(x,ui)(t = 0) strongly in L1(Ω), we conclude that Bϕ(x,ui,n)(t = 0) = Bϕ(x,ui,0n) converges to Bϕ(x,ui)(t = 0) strongly in

L1(Ω), we obtain Bϕ(x,ui)(t = 0) = Bϕ(x,ui,0) a.e. in Ω and for all M > 0, now letting M to +∞, we conclude that b(x,ui)(t = 0) = b(x,ui,0) a.e. in Ω.

As a conclusion, the proof of Theorem (5.1) is complete.

  1. Adams RA. ” Sobolev spaces ”New York (NY):Academic Press; (1975).
  2. Di Nardo, F. F´eo and O. Guib´e. ”Existence result for nonlinear parabolic equations with lower order terms”.Anal. Appl. Singap. 9, no. 2 (2011), 161–186.
  3. Redwane, H. , ”Existence of a solution for a class of nonlinear parabolic systems”. Electron. J. Qual. Theory Diff Equ., 24, , 18pp.(2007)
  4. Benkirane A., Bennouna J.:” Existence and uniqueness of solution of unilateral problems with L1-data in Orlicz spaces”. Ital. J. Pure Appl. Math. 16, 87-102 (2004).
  5. Kellou M.A., Benkirane A., Douiri S.M.,” An inequality of type Poincar´ee in Musielak spaces and applications to some nonlinear elliptic problems with L1-data”. Complex Variables and Elliptic Equations 60, pp. 1217-1242, (2015).
  6. Aberqi , J. Bennouna 2and M. Hammoumi, ” Existence Result for Nonlinear Degenerated Parabolic Systems”. Nonlinear Dynamics and Systems Theory, 17 (3) (2017) 217–229.
  7. Gossez J.P. :” A strongly nonlinear elliptic problem in Orlicz Sobolev spaces”. Proc. Am. Math. Soc. Symp. Pure Math. ,45,455-462 (1986).
  8. Azroul, E., Redwane, H., M. Rhoudaf, ” Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces”, Port. Math. 66 (1) (2009), 29-63.
  9. Aharouch L., Bennouna J.: ” Existence and uniqueness of solutions of unilateral problems in Orlicz spaces”. Nonlinear Anal. 72, 3553-3565 (2010)
  10. Musielak J., :” Modular spaces and Orlicz spaces”. Lecture Notes in Math. (1983).
  11. Redwane, H. , ”Existence of a solution for a class of nonlinear parabolic systems”. Electron. J. Qual. Theory Diff Equ., 24, , 18pp.(2007)
  12. Simon, J., ” Compact set in the space Lp(0;T ;B)”. Ann. Mat. Pura, Appl. 146 , pp. 65-96 (1987).

Citations by Dimensions

Citations by PlumX

Google Scholar

Scopus