Solar Photovoltaic Power Output Forecasting using Deep Learning Models: A Case Study of Zagtouli PV Power Plant

Solar Photovoltaic Power Output Forecasting using Deep Learning Models: A Case Study of Zagtouli PV Power Plant

Volume 9, Issue 3, Page No 41-48, 2024

Author’s Name: Sami Florent Palm1,a), Sianou Ezéckie Houénafa², Zourkalaïni Boubakar³, Sebastian Waita¹, Thomas Nyachoti Nyangonda¹, Ahmed Chebak4

View Affiliations

¹Condensed Matter Research Group, Department of Physics, University of Nairobi, Nairobi, Kenya
²Institute for Basic Science, Technology and Innovation, Pan African University, Nairobi, Kenya
³Ecole Doctorale Informatique, Télécommunication et Electronique, Sorbonne Université, Paris, France
4Green Tech Institute, Mohammed VI Polytechnic University, Benguerir, Morocco

a)whom correspondence should be addressed. E-mail: palm@students.uonbi.ac.ke

Adv. Sci. Technol. Eng. Syst. J. 9(3), 41-48(2024); a  DOI: 10.25046/aj090304

Keywords: Deep learning, LSTM, GRU, Solar PV Power, Zagtouli

Share

35 Downloads

Export Citations

Forecasting solar PV power output holds significant importance in the realm of energy management, particularly due to the intermittent nature of solar irradiation. Currently, most forecasting studies employ statistical methods. However, deep learning models have the potential for better forecasting. This study utilises Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU) and hybrid LSTM-GRU deep learning techniques to analyse, train, validate, and test data from the Zagtouli Solar Photovoltaic (PV) plant located in Ouagadougou (longitude:12.30702o and latitude:1.63548o), Burkina Faso. The study involved three evaluation metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). The RMSE evaluation criteria gave 10.799(LSTM), 11.695(GRU) and 10.629(LSTM-GRU) giving the LSTM-GRU model as the best for RMSE evaluation. The MAE evaluation provided 2.09, 2.1 and 2.0 for the LSTM, GRU and LSTM-GRU models respectively, showing that the LSTM-GRU model is superior for MAE evaluation. The R2 criteria similarly showed the LSTM-GRU model to be best with 0.999 compared to 0.998 for LSTM and 0.997 for GRU. It becomes evident that the hybrid LSTM-GRU model exhibits superior predictive capabilities compared to the other two models. These results indicate that the hybrid LSTM-GRU model has the potential to reliably predict the solar PV power output. It is therefore recommended that the authorities in charge of the solar PV Plant in Ouagadougou should consider switching to the deep learning LSTM-GRU model.

Received: 22 March, 2024, Revised: 6 May, 2024, Accepted: 7 May, 2024, Published Online: 25 May, 2024

  1. R. Ahmed, V. Sreeram, Y. Mishra, M.D. Arif, A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization, Renewable and Sustainable Energy Reviews, 124, 2020, doi:10.1016/j.rser.2020.109792.
  2. R.-E. Precup, T. Kamal, S.Z. Hassan, Solar Photovoltaic Power Plants, Springer Singapore, Singapore, 2019, doi:10.1007/978-981-13-6151-7.
  3. D.K. Dhaked, S. Dadhich, D. Birla, “Power output forecasting of solar photovoltaic plant using LSTM,” Green Energy and Intelligent Transportation, 2(5), 2023, doi:10.1016/j.geits.2023.100113.
  4. S. Sattenapalli, V.J. Manohar, “Research on Single-Phase Grid Connected PV Systems,” International Journal of Engineering and Advanced Technology, 9(2), 5549–5555, 2019, doi:10.35940/ijeat.b5159.129219.
  5. H. Sharadga, S. Hajimirza, R.S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renewable Energy, 150, 797–807, 2020, doi:10.1016/j.renene.2019.12.131.
  6. M. Elsaraiti, A. Merabet, “Solar Power Forecasting Using Deep Learning Techniques,” IEEE Access, 10, 31692–31698, 2022, doi:10.1109/ACCESS.2022.3160484.
  7. P. Li, K. Zhou, X. Lu, S. Yang, “A hybrid deep learning model for short-term PV power forecasting,” Applied Energy, 259(November), 114216, 2020, doi:10.1016/j.apenergy.2019.114216.
  8. F. Wang, Z. Xuan, Z. Zhen, K. Li, T. Wang, M. Shi, “A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework,” Energy Conversion and Management, 212, 2020, doi:10.1016/j.enconman.2020.112766.
  9. P. Jia, H. Zhang, X. Liu, X. Gong, “Short-Term Photovoltaic Power Forecasting Based on VMD and ISSA-GRU,” IEEE Access, 9, 105939–105950, 2021, doi:10.1109/ACCESS.2021.3099169.
  10. N.Q. Nguyen, L.D. Bui, B. Van Doan, E.R. Sanseverino, D. Di Cara, Q.D. Nguyen, “A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam,” Electric Power Systems Research, 199(June), 107427, 2021, doi:10.1016/j.epsr.2021.107427.
  11. A.P. Casares, “The brain of the future and the viability of democratic governance: The role of artificial intelligence, cognitive machines, and viable systems,” Futures, 103, 5–16, 2018, doi:10.1016/j.futures.2018.05.002.
  12. F. Chollet, Deep Learning with Python, 2nd Edition, Manning Publications Co, 2021.
  13. Dheeraj Mehrotra, Basics of Artificial Intelligence & Machine Learning, Notion Press, 2019.
  14. W. and A.H.Q. Salah Alaloul, Data Processing Using Artificial Neural Networks, Intechopen, 2020.
  15. R.C. Staudemeyer, E.R. Morris, “Understanding LSTM — a tutorial into Long Short-Term Memory Recurrent Neural Networks,” 2019.
  16. M. Hussain, M. Dhimish, S. Titarenko, P. Mather, “Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters,” Renewable Energy, 155, 1272–1292, 2020, doi:10.1016/j.renene.2020.04.023.
  17. R. Derakhshani, M. Zaresefat, V. Nikpeyman, A. GhasemiNejad, S. Shafieibafti, A. Rashidi, M. Nemati, A. Raoof, “Machine Learning-Based Assessment of Watershed Morphometry in Makran,” Land, 12(4), 2023, doi:10.3390/land12040776.
  18. A. Shah, M. Shah, A. Pandya, R. Sushra, R. Sushra, M. Mehta, K. Patel, K. Patel, A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network (CNN), Clinical EHealth, 6, 76–84, 2023, doi:10.1016/j.ceh.2023.08.002.
  19. N. V. Ranade, V. V. Ranade, “ANN based surrogate model for key Physico-chemical effects of cavitation,” Ultrasonics Sonochemistry, 94, 2023, doi:10.1016/j.ultsonch.2023.106327.
  20. R. Langbauer, G. Nunner, T. Zmek, J. Klarner, R. Prieler, C. Hochenauer, “Modelling of thermal shrinkage of seamless steel pipes using artificial neural networks (ANN) focussing on the influence of the ANN architecture,” Results in Engineering, 17, 2023, doi:10.1016/j.rineng.2023.100999.
  21. C.H. Liu, J.C. Gu, M.T. Yang, “A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting,” IEEE Access, 9, 17174–17195, 2021, doi:10.1109/ACCESS.2021.3053638.
  22. N.L.M. Jailani, J.K. Dhanasegaran, G. Alkawsi, A.A. Alkahtani, C.C. Phing, Y. Baashar, L.F. Capretz, A.Q. Al-Shetwi, S.K. Tiong, Investigating the Power of LSTM-Based Models in Solar Energy Forecasting, Processes, 11(5), 2023, doi:10.3390/pr11051382.
  23. K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches,” 2014.
  24. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” 2014.
  25. M.N. Akhter, S. Mekhilef, H. Mokhlis, N.M. Shah, “Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques,” IET Renewable Power Generation, 13(7), 1009–1023, 2019, doi:10.1049/iet-rpg.2018.5649.
  26. G. Li, S. Xie, B. Wang, J. Xin, Y. Li, S. Du, “Photovoltaic Power Forecasting with a Hybrid Deep Learning Approach,” IEEE Access, 8, 175871–175880, 2020, doi:10.1109/ACCESS.2020.3025860.
  27. S. Theocharides, G. Makrides, A. Livera, M. Theristis, P. Kaimakis, G.E. Georghiou, “Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing,” Applied Energy, 268, 2020, doi:10.1016/j.apenergy.2020.115023.
  28. K. Wang, X. Qi, H. Liu, “A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network,” Applied Energy, 251, 2019, doi:10.1016/j.apenergy.2019.113315.
  29.  Y. Qu, J. Xu, Y. Sun, D. Liu, “A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting,” Applied Energy, 304, 2021, doi:10.1016/j.apenergy.2021.117704.
  30. A. Agga, A. Abbou, M. Labbadi, Y. El Houm, I.H. Ou Ali, “CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production,” Electric Power Systems Research, 208, 2022, doi:10.1016/j.epsr.2022.107908.
  31. D. Sadeghi, A. Golshanfard, S. Eslami, K. Rahbar, R. Kari, “Improving PV power plant forecast accuracy: A hybrid deep learning approach compared across short, medium, and long-term horizons,” Renewable Energy Focus , 45, 242–258, 2023, doi:10.1016/j.ref.2023.04.010.

 

Citations by Dimensions

Citations by PlumX

Crossref Citations

This paper is currently not cited.

No. of Downloads Per Month

No. of Downloads Per Country